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In commutative ring theory many interesting facts about regular sequences are obtained.
Schmitt developed in [2] the theory of regular sequences of Z,-graded ring, in which he introduced
the concept of odd regular sequnces. Let R =R, + R, be Z,-graded ring and let M be an graded R-
module. If 7 is an even homogeneous element in R, we mean that r is an M-regular element in
classical sense. On the other hand Schmitt defined an odd M—régular element p € R, by satisfying

the condition that the sequence

A—L5A—L5A
isexact. It seems quite different to the classical one, but many corepponding results are shown in
[2].

If R is a neotherian local ring and M is a finite and non-zero R-module, then we can consider
the maximal length of odd M-sequence in the same way as the defition of depth M. We call it odd
depth of M and denote it by odepth M. He got a fundamental relation

odepth M = odepth M /pM + 1
for an M-regular element p € R, between odepths as we have one between depths. However its
proof needs several steps and the theory of cones in projective varieties. In this paper we shall
show an exact sequence of Koszul transforms (Theorem 1) which enables us to show another proof
of the above equation.

As for Z,-graded ring we reffer to Chapter 3 in [1].

In this paper we fix notation as follows. Let R be a Z,-graded noetherian local ring with
residue field k and let m be the maximal ideal of R. Let A be a finite, non-zero and left R-module
and p, € R,. We put R= R/p,R and A= A/pA. Assume that p, is regular on A. Then it
follows from Theorem 2.6 in [1] that p, # 0 in ®, where ® = (m/m*),. Therefore if dim,® > 2, we
can choose elements p,,...,p, in R, such that {p,, p,,...,0,} is a basis of ® over k. Letry,...,r, be
elements in m, such that {7,,...,7,} is a basis of (m/m*),overk. Let&,.. .,&, be odd variable over
Randlet x, y,,...,y, be even variables over R.  We denote the polynomial ring R[&;,....E,1 X, ¥, .Yl

by R[x|x, y] and denote R[&,,....x, ys,....y,] by R[Ely]. We consider odd elements
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0=%r& +p1x+,-222p"y" €R[&lx, y]
O'=2n&+ T pyi € REIY]
§=Y7é +i2%5i)7i € RI§1x, ]
where 7, and p; are respectively the image of r; and p; under the canonical homomorphism R — R.
The Koszul transform €, is the homology of a complex
ALE1x, y]—— ALE | x, y]—— A[{ 1 x, y]

where A[£1x,y] =A ®: R[E1x,y]. €, will be also denoted by €(8, A[E1x,y]). ByLemmad4.1in
[2] C, is also an k[€|x, y]-module. Let z € A[Elx, y] with 6z =0. We denote the class of
zin €, by [z]. We put €; = €(6, A[€lx, y]), €F = €&, A[E1y]) and €; = (6, A[Ey])

since A is also an R-module.
Lemmal. C;is naturally isomorphic to €3 and we have €; = €5[x].

Proof. Letzbe an elements in A[E]y]. We see that
67=07=(8"+px)7=6'%.

This implies that €; is naturally isomorphic to €5. Let v be an element in A[E]x, y]. Simce
A[€1x,y] =A[&1yl[x], we can express an element v of A[£| x, y] with Zy, Z,,...,2) € A[E1y] such that
V=2 +x+-+7x.

It follows from the fact p,A = 0 that
V=(0"+px)v=06"7,+6' 7, x+--+8"7,x".
Hence 6V =0 ifandonlyif 6Z;=0 foralli. Therefore we can define amapping ¢: €; — €;[x]

by ¢ ((V]) = [Zo] + [Zi]x +--+ [Z]x'. Ttis easily seen that ¢ is an isomorhism in the category of

R[&1x, y]-modules and we may write as €; = €3[x]. This proves our lemma.

Because p, is regular on A, we get a short exact sequence

0 yA—L 5 A > A >0.

Since R[& | x, y] is an R-flat module,
00— A[Elx, yY]—2 5 A€l x, y]— A[E ] x, Y] —— 0

is exact, which makes a complex exact sequence. Whence we obtain a long exact squence
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4)@;{ A @Z A /(gA 6; A ng ,

where A is the connecting homomorphism.

Lemma 2. Let v be an element of A[E\x, y] with &v = 0. Then there exists an element z in

A[&|y] such that 6z =0 and [z] = [v] in C,.

Proof. As the proof of Lemma 1, we can write

V=Zp+ X+ -+ z,x’
with z; e A[Ely] for all i. We prove by induction on [. If [ =0, then it is trivial. Suppose
[>21. Put

Vi=zo+ X 4dzx
Then v=v, +z,x'. Comparing the coefficient of x"' of the equation
Sv=(8+px) (v, +2,x)=0,
one gets p,z,=0. Hence there exists w, e A[€1y] such that z, = p;w,, since p, is regular on A.
Therefore
v=v+ powix' = v+ powx™
=y, + (8- &)wx™ = (v, - Fwix™) + dwix".

By induction we can find ze A[ly] and v" € A[&]x,y] suchthat 6z=0,v, - Swix™ =z+ 8V,
because 8 (v, — &w;x™")=0. This yields

v=z+ 80 +wx),

whence one obtains that [v] = [z] in €, which proves our lemma.
Lemma 3. The mapping €, —2— €, is surjective.

Proof. By lemma 2 each element in €, can be expressed as [z] with z€ A[{ly]. Then 6z |
=(8+px)z=0, andso 8z=0, p;z=0. Since p, is an A-regular element, we can write as z =
pw withw e A[€ly]. Then we see that

p(Ow)y=-pw=-07=0.
Again we can find an element w, in A[£1y] such that 6w =p,w,. Let w be the residue class of
win A[Ely]. Then if follows that 5w = §w=0. Therefore we obtain that [w] € ¢; and p,[w]

= [pyw] = [z] and this proves our lemma.
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From the long exact sequence and Lemma 3, we get the following theorem.

Theorem 1. Let A be a finite R-module and let p, be an odd and A-regular element. Then the

sequence

0—C; —25C; —2 5E, —0

Is exact.

We define an R[£ | y)-homomorphism ¢ : €5 —— €% by ¢ ([Z]) = [w]for [Z] € €5, where
z,we A[&| y] and 6z=pw. Since we.see by Lemma 1 that §; = Cj[x] = € Qe ,y RIE N x, y],
we get an R[¢ | x, y]-homomorphism ¢ ® 1: €7[x]—— €%[x]. We denote by id the identity
mapping of ¢;.

Proposition 1. Under the assumption of Theorem 1, we have A= ¢ ® 1 + x id.

Proof. By Lemma 1 each element in €; can be expressed as
[Zol + [Zi] x +---+ [2] X'
with z; € A[€ly], where Z; is the residue class of z;in A[E]1y]. Note that §°Z;=0. Hence there
exist wo, wy,'++, w; in A[£ly] such that §z; = pyw,, and so ¢ ([Z]]) = [w;]. We see that w,; =0
and put
V=zo+ X 4o+ 7x!
Then we have
v=(8+pix)v=p {wo+ (W +20) x ++ (W + z.0) x' + z,x"™}.

It follows that

A ([P]) = o] + [W] x +---+ D] x' + [Zo] x + [Z,] & ++--+ [Z] x™!
= ¢ ([Zo]) + 9 (2D x +---+ @ ([Z21]) X' + x [V]
=(0® 1 +xid) ([v]),

which proves our proposition.

Proposition 2. There exists an polynomial f (E1x, y) in k[ x, y] such that f (€| x, y) is a monic

polynomial in the variable x and f¢, = 0.

Proof. Because €is a finite R[£ | y]-modules, we can choose a set {[i,],...,[iZ,]} of genera-
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tor of €5 with &; € A[Ely]. Then we can write

! .
o([i,]) = zgij[ﬁj] with g;€R [5 [y]
Jj=1
It follows from Proposition 1 that

Al ]) = ¢([u: ) + [u; 1x.

Let a matrix G be (g;). Then we have

Al ] []
: =(G-xE)| :
A([u:]) (]
Let adj(G — xF) be the adjoint matrix of (G —xE). Multipling adj(G — xE) we obtain
[, ] A([w D
|G-xEl| : |=adj(G-xE) : .
(@] A([u ])

Let g (Elx,y)=1G —xEl. we see that the leading term of g(0,...,01x,0,...,0) is x"and that
gC€; CA (C;[x]), and so gC3i[x]C A (€i[x]). Using the exact sequence in Theorem 1 we
conclude that g€, = 0, and let f be the residue class of g in k[£ | x, y] which satisfies conditions

of our proposition.

Example. In Proposition 2 we cannot take x' as f. Letk be a field and let 7, 77,, 17; be
odd variables over k. Put
R =k[m, Mo, M1/ (M1l — M3 + MiT13) = K[y, Pa, Ps),
where p; is the residue class of 1,. The R is a local Z,-graded ring. Because p,p,p; =
p1 (p1p2 + p1ps) = 0, we see that
R = (k + kp,p, + kp,ps) + (kp, + kp, + kp;)
m=kpip, + kp,ps,
and hence
mim® = (mim®), = kp, + kp, + kps.
It is easily seen that p, is an R-regular element. Let 8= p,x+ p,y,+ pyy; andlet z=p,p;. Then
0z =0, and hence [z] is an element of .
We will show that x"[z] # 0 for all positive integer n. Indeed, assume that x"[z] = 0 for
some n. Then there exists an element g of R[x, y,, y;] such that zx" = 8g. We write g =

wx"" + g, with w € R, where g, is a polynomial which does not contain the monomial term of the
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form ax' witha € R. Then we have
Papsx’ = (P1x + Pays + Pays) (wWx"" + gy).
Comparing the coeffients of x”, x"'y,, x"'y,, it follows that p,p; = pyw, pw =0, pw=0. Put
W=a; + api P+ az P13+ APy + aspar + asPs with a; € k.
Since p,w =0 and p;w = 0, we know that a, =0, a,=0, as =0, as=0 and therefore w=a,p,p, +
asp;p;. Now we get a contradition that p,p; = pjw =0. Finally we conclude that x"C; # 0 for

all positive integer n.

We denote by a(A) the ideal (Annyg, €4 + (£)/(E) of the ring k[x, y] and also denote by
b(A) the ideal (Anng,, €+ (E)/(&) of the ring k[y]. Let Sing A be the close subset V(a(4)) in
Proj (k[x, y]) and we call it the singluar schme of A. We define odd depth odepth A by
codim Sing A. (Cf. 5.2 of [2]) | |

We shall show an another proof of the following Theorem.

Theorem 2. [Theorem 5.4 in [2]] Let A be a finite, non-zero module over a noetherian local

ring R.  Let p, be an odd and A-regular element. Then we have that odepth A =odepthA/p,A + 1.
Proof. This theorem follows from the next three lemmata.
Lemmad4. odepth A =ht a(4) and odepth A = ht b(A).
Proof. It is clear that odepth A = ht a(A). By Lemma 1 we have Anng, ,,&; =
(Anngg,, ,Co)[x] and thus BA)[x] = (Anng, ,C; + (£)/(). This implies that odepth A =
ht b(A)[x] = ht b(A).

Lemma5. a(A) N k[y] = b(A) and a(A) = bA)[x].

Proof. To prove that a(A) N k[y] = b(A) it is sufficent to show that for fe RIEly], f €;=0
ifandonly if f€,=0. Itfollowsfrom Lemma 1 and Theorem 1 that @; [x]1 2> ¢, >0 is

exact. This implies that if f€; =0, then f€, =0. Conversely suppose that f&,=0. Let[Z] be
anelementof €;. Becuase €;=C;, we may assume that [z] € €. By Theorem 1, there exists

vin A[& | x, y] suchthat 6v =0 and A ([V])=f[V]. As the proof of Proposition 1 we write
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[V1=(Zo]+ [z ]x + - +[z %'
with z;€ A[Ely]. It follows from Proposition 1 that
OSZISlf (z:]x' = OSZISI [Z:1x' + OSZISI[Zi]xi+1.

Comparing the degree in x we see that [v] =0 and so f[z] =0, and therefore f €;=0.

By Proposition 2 there exists an element f in Anny,,, ,;&4 such that f is monic in the vairable
x. Then the residue class f in k[x, y] of f belongs to a(A). But f does not belong to b(A)[x].
Indeed, on the contarary assume that f € b(A)[x]. Then we can easily varify that 1 € Annyg,,, 3 i
whence €; = 0. By the next lemma A = 0, hence A = 0 for p, is A-regular. Accordingly we get a

contradiction and that proves our lemma.
Without assumption that p; is an A-regular element, we have the following lemma.

Lemma 6. Let R be a noetherian local Z,-graded ring and let A be a graded R-module. If ¢, =
0, then A =0.

Proof. Let R =Ry, + R,. Because R, is a finite Ry-module, A is a finite Ry-module and
hence NmyA =0. We claim thatif €, =0, then 0 :, R, =0. Indeed, assume that a € A with
Ria=0. Since pa =0 for all i, § (a&,&,---&,) = 0. By assumption there exists an element
g€ A[Elx, y] such that a§,&,--- &, = 6g. Put

A

g =2 biél 51 ép +h,
where A does not contain any monomial of the form of ¢&,-- él --&,. Tt follows that
a=Y (-1)"'rb! and pb;=0 forall ij

with b/ = b,y — b;;, where we write b, = b,y + b; with b, € A, and b;; € A;. Whence a € myA
and b/ €0 :4 R, forall j. Repeat the same procedure. Then we see that b emeA, and so a
emjA. After iterating we get a € Nm¢A, so a=0.

Let a €A. Then pip,...p,a €0 ;4 R,. We can easily see that by induction on ¢ that
PiPi---Pya =0 forallz, 1 <t<gq. In paticular p,a =0 for all i, therefore a €0 ;4 R;,. We
obtain that a =0 and this proves that A =0.
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