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Abstract

A mathematical model of the probabilistic inventory problems is presented and an analysis
on the economic ordering quantity in N-period inventory problems is studied. The optimum
policy of multistage problems is discussed under the assumption that the total cost function of
single period follows some conditions. To seek the optimum policies we make functions and
using them we are able to decide the economic ordering quantity. We give an example which
follows our mathematical model.

Key words: Probabilistic inventory problem, Dynamic programming, Optimum policy.

Introduction

Mathematical inventory models with a piecewise cost function have been studied in
Kodama and Sakaguchi (2001a, 2001b, 2001c, 2002), Sakaguchi and Kodama (2002a, 2002c)
and various properties of an optimum policy in its inventory systems are obtained. It is also
attempted to express the optimum function by closed forms with known cost functions and
some sufficient conditions on cost functions are found to ensure simple treatments on an
optimum policy. Our decision criterion is the minimization of expected costs which include
the ordering, holding, and shortage costs.

In this paper we review an example in Sakaguchi and Kodama (2002b) which inspired us
to make a generalization of the inventory model. Let x be the amount on hand before an
order is placed and let z be the amount on hand in initial period after an order is received. In
the probabilistic inventory problems of single period with demand B we would make decisions
of ordering quatities to minimize the expectation E{C(B,z)} of its total cost. We define the
function H(z) by the equation E{C(B,z)} = —cx+ H(z) in order to analyze the inventory
system, where c¢ is the purchasing cost per unit. The assumptions of the former models are as
follows.

Let Ry,---,R, be a sequence of real numbers such that R} <---<R,. Let
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Hi(z) (2 <i<m) be real valued-functions defined on [R,_, R;], and H;(z) is defined on
(=00, Ri] and H,,41(z) is defined on [R,, oo]. Abbreviate (—oo, Rj] to [Ro, Ri] and
[Ry, 00) tO [Ry, Rpuy1]. Assume that for all i with 1 <i<m+ 1, H;(z) has a continuous
second derivative on [R;_j, R;], and it is a convex function on [R;_j, R;] which means by the
condition that H}'(z) >0 on (Ri_;, R;). We assume that H'(R;) < H' (R;) for all i

lim Hi(z) <0 and ZILI?QH’+1(Z) > ¢. Now we set

m
z——00 "

H(z) = Hi(z) for ze (Ri-1, Ry

The example in Sakaguchi and Kodama (2002b) which is simple does not satisfy these
conditions in general. In this paper we take some of the assumptions such that the
mathmatical model covers its example and we may still apply the developed theory. By the
method of the dynamic programming we investigate the optimum ordering quantity of
multiperiod problems provided we know about the function H(z).

Let fi(x) be the minimal expectation of the total cost with single period. Then we may

write

filx) = rhpziil{fcx + H(z)}.

Let ¢(b) be the probability density function of demand B. In multiperiod models we suppose
that ¢(b) remains unchanged from period to period and demands in each period are inde-
pendent. We should take in the discounted value of money in this case. That is, if a(< 1) is
the discount factor per period and f,(x) is the discount expected loss for n-period inventory

model when an optimum policy is used at each purchaing opportunity, then
fu(x) = rp>in { —ex+ H(z) + a/ Joo1(z — b)qﬁ(b)db}
z>x 0

We present the fundamental analysis of our model in Theorem 1.6 and a method to get the

optimum quantity in Theorem 1.7. An example which follows our model is shown in section 2.

1. Mathematical models

Let ¢, be real numbers with 0 < ¢, 0 < a < 1. Let ¢(b) be the density function of a
real random variable B which means demand and we assume that ¢(b) is a continuous
function on [0, co) with ¢(b) =0 for b < 0. Let ®(b) be its distribution function. We let

H(z) be a function on R, which suggests that the expectation of the total cost in the
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probabilistic inventory problems of single period is —cx + H(z).

Throughout this section we assume the following conditions on H(z).

(1) H(z) is a piecewise continuous function on R and H(z) has a minimal value at
z=2X;. More precisely if z < X; then H(z) > H(X;) and if X; < z then H(X)) < H(z).

(i) Let Ry,---,R, be a sequence of real numbers such that R} <---< R, and
Ry <X <Ry. Let Hi(z) (1<i<m—1) be real valued-functions defined on
[Ri, Riy1], and let H,,(z) be defined on [R,, o). We abbreviate [R,, co) to
[Ry, Rns1]. We suppose that H;(z) (1 <i<m) has a continuous derivative on

[Ri, Ri+1], and we assume

H(z)=H;(z) if z€[Ry, Rit1] (1 <i<m),

which leads us that H(z) is continuous on [Rj, o0).
(iii) H' (z) is non-decreasing on [X;, c0).
(iv) We have lim H'(z) > c.
Note that H’ (z) is a piecewise continuous on [R;, co). For a given real number x and z

we define functions fi(x), Fr(z) (k=1,---,N) as follows.

fi(x) = min{—ex + H(z)},
5 (1.1)
fk(x):Inin{—CX-i-H(Z)-i-a/O f;;_l(z—b)qé(b)db}, k=2,3,---,N,

>X

Fk,l(z):H(z)+a/ooofk,1(sz)¢(b)db, So()=0, k=1,2,--- /N. (1.2)

As we say in introduction, the assumptions on H(z) in this paper implies in essential the
conditions in Kodama and Sakaguchi (2001a, 2001b, 2001c, 2002), Sakaguchi and Kodama

(2002a, 2002c) and we could use the former result.

We consider the inventory problem of one-period. Since

—cx+ H(x) for x<x,

- (1.3)
—cx+ H(x) for x; <x,

fi={

we get the optimum ordering quantity in our inventory problem of single period that if
x < Xy, then order X| — x, otherwise do not order.

Next we study 2-period problems. Since



M. Sakaguchi and M. Kodama

F(z)=HE) +o / " fi(z — b)é(b)ab,

£l =min{-cx-+ HE) +a [ A~ Dow)db)

= I}En{—cx + Fi(2)},

if we find a number X, such that the function Fj(z) has a minimal value at X, then we make a
decision that if x < X, then order X, — x, otherwise do not order. Next if a demand in the
first period is by, then we may make the decision of the second period as one period
inventory problem with an initial stock max{X,, x} — b;.

Thererfore we shall repeat the above method replacing H(z) with Fi(z) in order to obtain
the optimum ordering quantity of a 2-period problem. Because z— b < X, if and only if

z—Xx1 < b, we have

—c(z—=b)+ H(X1) for z—Xx <b,
fi(z—b)={ ) (1.4)
—c(z=b)+H(z—b) for b<z-—x.

Let m be the mean of ¢(b).

Lemma 1.1. F\(z) is piecewise continuous on R and
H(z) — acz + aH(X)) + acm for z <X,
z—X]

Fi(z) ={ H(z) — acz+ acm + « 5 H(z—b)op(b)db

+aH((x)(1 = ®(z—Xx;)) for X <z,

in particular Fy(z) is continuous on [R;, co).

Proor. Since we assume that ¢(b) =0 for b <0, it follows from (1.4) that

Fi(z) = H(z) + o /0 ez — b) + H(x)o(b)db

= H(z) — acz+ oH (X)) + acm for z < xp,

Fi(z) = H(z) + a{ /0 T ez — b) + H(z — B)o(b)db

+ /Oo [—c(z—b) + H(Scl)]¢>(b)db}
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— H(z) — acz + aem + a / T (= — b)o(b)db
0

+OLH(5C1)(1—(I)(Z—5CI)) for x; <z

Since we assumed that ¢(b) is a continuous function on [0, co), we complete the proof.

By lemma 1.1 we have a derivative of Fj(z) (cf. Theorem 2.6 in Sakaguchi and Kodama

(2002a)).

Lemma 1.2. We have

F{+(R1) = H;(R1) — ac,
F{(z)=H'(z) —ac  for Ry <z <X,

Fi(z) = H(z) - ac+a / T H (2 — b)p(b)db
0
for z>X% and z#R (2<i<m),

Ri—X
Fl.(R) = H.(R) — ac+a / H'(R - b)o(b)db (2 < i<m),
0
Ri—X
Fl_(R)=H'(R) — ac+ a/ H'(R; — b)o(b)db (2 <i<m).
0

We see that F|(z) exists on [R;, oo) without finite points and Fj(z) is piecewise con-

tinuous on [R, c0).
Lemma 1.3. We have lim F|(z) > c.
Z—00

Proor. It follows that

lim Fj(z) = lim H'(z) — ac + a/ lim H'(z)¢(b)db
Z—0 0

I—0 Z—00

= lim H'(z)(1 + o) — ac > ¢,

Z—00

and we finish the proof.

Note that if)_Cl §£ Rl, then Fi ()_C]) = —ac < 0and if)_Cl = R], then F]+()_C1) = H{Jr(Rl) — Qc.

Lemma 1.4. Put X = inf{z > X, | F|,(z) > 0}. Then we have Fi(z) > F\(X2) for z < X» and
Fl(Z) < F1(5(72) fOV Xy < Z.
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Proor. It follows from Lemma 1.3 that there exists a number X, such that
Xy =inf{z > X; | F{,(z) > 0}. We see that if z < Xy, then Fi(z) > Fi(X1). In fact,
Fi(z) — Fi(x1) = {H(z) + a(H(X)) — cz) + acm}
—{H(*) + a(H (X)) — cX1) + acm} (L.5)
= (H(Z) — H(Scl)) + OéC(X‘l - Z) > 0.

If x; <z< X, and z # R; for any i, then F{(z) < 0. Since Fj(z) is a continuous function on

[Ry,00), we see Fi(z) > F(x;) for x; <z < X, by elementary facts.

If X, <z, then F{(z) > 0. Indeed, it follows from Lemma 1.2 that
X2—X1
Fl.(%2) = H.(%) - ac + a / H' (%2 — b)p(b)db > 0.
0

Therefore we obtain by Lemma 1.2
z—X1
Fl() = H\.(z) —ac+a / H'(z - b)o(b)db
0
X2—X1 z—X|
=H' (z) —ac+ a/ H'(z — b)p(b)db + a/ H'(z — b)p(b)db
0 o (1.6)

> H\ () - H.(%) + a /0 u [H'(z — b) — H' (%> — b)|(b)db

ta / T by,

Since H' (z) is non-decresing on [X;, co), we see that

H' (z) = H\(X2) 2 0,
H(z—b)—H'(x—b)>0 for 0<b<x —Xxi,

z—b#R;, % —b#R;, (2<i<m), (1.7)
HI(Z—b)zH;(Xl)ZO for X — X <b<z-Xx,

z—b#R (2<i<m).

Thus we get Fj(z) >0 for X, <z and z # R; (2 <i<m) by (1.6) and (1.7). Hence it is also

clear that F\(Xx;) < Fi(z) for X <z. We conclude the proof of the lemma.

Lemma 1.5. We have

—cx+ Fi(x2), for x <X,
—cx+ Fi(x), for X% <x

(0 = {

Proor. By (1.1) and (1.2) we see that
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z>Xx

H(x) = min{fcx +H(z)+ oz/ocofl (z— b)qb(b)db} = Iglzi?{fcx + Fi(z2)}.

Therefore we prove this lemma by Lemma 1.4.

Lemma 1.6. Put Fy(z) =Fi(z) for z€[R; Riy1]) (1 <i<m). Then Fy(z) has

derivative on [R;, Ri1).
Lemma 1.7. F| (z) is non-decreaing on [Xz, ).

ProOF. Assume Xx; <z < z;. By Lemma 1.2 we see
Fi (22) = F{ (21) = H| (22) — H'(z1)

+ a/o H'(z - b)o(b)db — a/o H'(z) — b)p(b)db
—H\(z) - H\(z)+a /O U H (s - b) — HY (21— B)|(b)db

ba / T H (5 - bo(b)db > 0.

%
Because H', (z) is non-decreasing on [X;, 00),

H' (z) — H! (1) 2 0,

H'(z;-b)—H'(zi —=b)>0 for 0<b<z —X,
Zz*b#R[,Zlfb#Ri(ZSiﬁm),

H'(zy—b) > H' (%) >0 for z—X <b<z—X,
—b#R (2<i<m).

We complete the proof.
By induction we get the following theorem because we have assumed Fy(z) = H(z).

Theorem 1.8. For each i (1 <i< N) we have the following statements.
(1) We have

H(z) — acz + aFi_i (X)) + acm for z<Xx;,
Fi(z) = 4 H(z) - acz + aem + a/ Foi(z— b)o(b)db
0

-‘rOLF‘,j,](SC,')(l — (I)(Z — 5(,)) for X < z,
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in particular F;(z) is continuous on [Ry, 00).

(i) We obtain that

Ff/Jr(Rj) = HL(R]) — ac, for Rj < X,
FIL(R_/') = HI,(R]‘) —ac, for Ry <R <X,
F/(z)=H'(z)—ac  for Ry <z <X,

Z—X;

F©) = H) —acta [ B G- bobd
0
for z>Xx and z#R; (X <R)),

Rj—X;
FL(R) = HL(R) —aca [ FL (R~ b)ob)db for % <Ry

f=1

Ri—%
FL(R) = H(R) —acta [ FL (R~ Do) for 5 <K,

(iii) We have lim F!(z) > c.
Z—00

(iv) There is a number Xiy1 such that X, = inf{z > Xx; | F{_(z) > 0}.

(V) Fi(z) is a piecewise continuous function on R and Fi(z) has a minimal value at
z=2Xir1. More precisely if z <Xy then Fij(z) > Fi(Xiy1) and if Xy <z then
Fis) < F(2).

(vi) We obtain that

—cx + Fi(Xit1), for x <X,
Jinr(x) = -
—cx + Fi(x), for X1 <x.

(vii) Put Fyj(z) = Fi(z) for z € [R;, Riy1] (1 <j<m). Then Fj(z) has a derivative on
(R}, Rjs1l.

(viii) F,(z) is a non-decreasing function on [Xiy1, 00).

Proor. It follows from lemmas above that this theorem holds in the case i=1. If
i =2, then we see that the assumptions on H(z) lead us to the ones on Fi(z). Thus this

theorem is true when i =2. By the induction we may prove the theorem.

Theorem 1.9. [n our mathematical model of dynamic inventory problems the optimum ordering
quantity of N-period is if the initial stock x is less than Xy, then order x — Xy and otherwise do

not order.

Proor. By (v) in Theorem 1.8 we may make decisions in this theorem and we finish the

proof.
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We may apply the following analysis to this inventory model and we study the optimum

policies by the results of Sakaguchi and Kodama (2002c).

Theorem 1.10 (Theorem 2.1 in Sakaguchi and Kodama (2002c)). Let R be a real num-

ber. Then the following statements hold:

(1) If H(R) > ac, then F, (R)>0 forall k 1<k<N-1L

2 If1<k<N-1 and Fj_; (R) <0, then F_ (R)=H|(R)—ac.
(3) If 1<k<N-1, H(R) <ac and F£k71)+(R) <0, then F, (R)<O.
(4) If H (R) <0, then F_ (R) <0 forall k 1<k<N-1

ac(l +a+ -+ a* 1)
l+a+---+ak

(5) If 1<k<N-1and H_(R) < , then F (R) <0.

l+a+ - +a&h
I+a+ - +ak

6) S 1<k<N-1and H,(R) =< , then Fl (R)<0.
Corollary. Let p be an integer with 1 <p <m. Then we have:

(1) If H.(R,) >ac, then X <R, for all k 1<k<N.

(2) If H.(R)) <0, then R, <Xy for all k 1<k<N.

ac(l+a+---+a)

!
B) I Hi(R,) < l+a+---+of

, then R, <Xy for all k 1+1<k<N.

2. An example

We shall consider an example of the probabilistic multi-period inventory model with zero

delivery lag, backlogging of demand and linear purchasing cost [c¢(y) = ¢y] in this section.

Model and Notations:

(1) The multi-period model with backlogging of demand will be investigated under
general demand without setup cost. The stock replenishment occurs instanta-
neously.

(2) Regular ordering takes at the beginning of each period, purchasing cost ¢ is charged
and the period length is z. Let x be the initial stock level and let z be the amount
on hand in initial period after an order is received. That means that the amount of
a regular order is z — x.

(3) Let & and p be the holding and shortage costs per unit per period, respectively. We

assume ¢ < p.
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(4) Demand B in each period is a nonnegative random variable with a known dis-
tribution ®(b) and its density ¢(b). The functions ®(b) and ¢(b) remain unchanged
from period to period and demands in each period are independent.

(5) The additional orders in the case the amount in inventory is less than R at given £,
(0 < tp < t) in each period are allowed, and the stock is replenished to the amount in
inventory at fy is equal to S. Let ¢; (¢; < ¢, )be the cost per unit of the additional
orders, respectively.

(6) Demand occurs according to a general function g(7/t)b during the period z. Let

the amount in inventory at time 7 be designated by Q(7). Then

O(T)=z—g(T/t)b, (0<T<y), (2.1)

where ¢g(0) =0,g(1) =1 and dg(x)/dx >0 (0 <x<1). In other words, demand
occurs according to ¢g(7/t)b, (0 < T <¢). If b>s, then there exists an unique
positive T/t such that s = g(T/t)b. Let it be designated by T/t =g '(s/b).

(7) The total cost is the sum of the purchasing cost, the holding cost, the shortage cost
and the additional purchasing cost and we search the amount of a regular order at
which the expectation of the sum is minimal.

(8) We denote « by the discount factor (0 < a < 1). Let f,(x) be the discount expected
loss for n-period inventory model provided that an optimal policy is used at each
purchaing opportunity, where x is the initial stock level.

Since the unifilled demand is backlogged, it is necessary to investigate in the case when z

is negative.

Inventory
level

z—g(T/t)b S+ (g(to/t) = g(T/D)b |~

O to t t+to 2t Time(T)

Figure 1

t . ..
Let Ty = 70, go=¢g(Ty). Then 0 < Ty < 1,0 < go < 1. For the sake of simplicity we add

. 1 o
the conditions that go > 3 and R < goS and we assume that ¢(b) has a derivative on (0, c0).
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. R S
Let’s consider the sequence 0, R, , R+ g0
1—go 1 —go

G(y):/oyg(T)dT and m = E(B).

. We set that

Put the constants d; (1 <i<4) as follows.

/ [(1 = To)(S + gob) — (G(1) — G(To))]$(b)db

/ [(1 = T0)(S + gob) — (G(1) — G(To))](b)db

dy — / (g7 ((S/b) + 90) = To) (S + gob) (22)

=

+(G(To) — G(g7 ' ((S/b) + 90)) ) b] H(b)db
di= [ 167 (/) + ) = 1)(S + ub)

T-gg

+(G(1) = G(g7 ' ((S/b) + g0))) b] &(b)db

We et the functions w; (1< i< 11) be
i (z) = /O C1G(T0)b — ToZ](b)db,
(2 / (Toz — G(To)ble(b)db,
wa(z) = [ 16T~ Todlolb)d,

90
00

wa(z) = | (297" (/) — G(g7'(2/b))b] (b)db,

ws(z) = /0 (1 = To)z — (G(1) — G(T0))blo(b)db,

we(z) = [ 10 - Tz - (G01) — G(T)Biolb)b, 23)
wy(z) = /j[(l — T0)(S + gob) — (G(1) — G(To))b]¢(b)db,

we(z) = / T g /) — To)=+ (GT) — Gla (2/5))B] 6(8)ds,

wo(z) = [U_OR[( “1(z/b) - 1)Z+ (G(l) - G(gil(z/b))b]gb(b)db,

wio(z) = S+ gom — z,
win(2) = /OC IS+ gob — ZJ(b)db

90
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We also set the functions H;(z) (1 <i<5) as follows.

H(z) = ciz+ pwi(z) + cawio(z) + h(dy + d3) + pds, for z<0,
Hy(z) = ciz + hwy(2) + (h + p)wa(z) + pws(z) + cawio(z)

+h(d2 + d3) + pdy, for 0<z<R,
H;(z) = c1z + h(wa(2) + we(2) + wr(2)) + (b + p)wa(z) + pws(z)

R
+ cowi1(2) + hds + pds, for R<z< i

Hy(z) = ciz + h(wa(z) + ws(z) + wr(z) +ws(2)) + (h + p)wa(z) " @4
+ p(ws3(2) +wy(2)) + cow11(2) + hds + pdy, for T fgo <z< R+ lg—o—io’
Hs(z) = ciz + h(wa(z) + ws(z) + wg(z2)) + (h+ p)wa(z) + p(ws(z) + wo(z))

+ cowy1(z) + hds + pdy, for R+ lgjio <z

Then H;(z) (1 <i<5) have a second derivative on the suitable interval. The expected
cost of single period is given by
E{C(B,z)} = c¢1(z — x) + hE{holding quantity} + pE{shortage quantity}
+ ¢y E{additional purchasing quantity}.

We define the function H(z) by the equation E{C(B,z)} = —cix+ H(z). Then we have

the following proposition.

Proposition 2.1. (Sakaguchi and Kodama (2002b)) We have

H(z) if z<0,
Hy(z) if 0<z<R,

Hi(z) if R<:z<

H(z) = =40 ¢ (2.5)
. 90
Hy(z) if <z< R+ ,
+(2) 1 —go 1 —go
. S
Hs(z) if R+ g0 <z
1—9go

Now we shall show an example which needs our model in section 1. For that sake we

set the density function ¢(b) as follows.

0 if b<0,
30_%f( R y , R
b— f 0<b< ,
3(b) = R [~ go S S (2.6)
0 if <b
— 90
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Then we see that wy(z) = 0, wy;(z) = 0 by (2.3), and hence Hy(z) = Hs(z) by (2.4). We
reset the function H(z).

Proposition 2.2. We obtain that

H(z) if z<0,
Hy(z) if 0<z<R,
H(z) = { Hs(z) if Rgzgle , (2.7)
— 9o
. R
<
Hy(z) if 1790_2

The derivarives of H;(z) were shown in Sakaguchi and Kodama (2002b) when ¢(b) is in

general. We obtain the derivatives in this case by these facts.

Proposition 2.3. Under the assumption 2.6 we have

Hi(Z):lepT()fCZ if ZSO

Hy(z)=c+ (h+p) (gi) . l(g)cb(b)db —pTy—c; if 0<z<R,
Hy(z) = e+ h|(1 - Ty)® < >+T0‘I)(£)+/L g’l(g)qﬁ(b)db

9o

+cz{@(ﬂ)f1fS_R¢(Z_R)}, if R<z<- R
go go go 1 —go

Hj(z)=ci+h if

Loy R)¢<Z ;OR):| o

<z
— 90

By Proposition 2.3 we obtain the following proposition.

Proposition 2.4. Let ¢(b) be as (2.6). Then we have the following statements,
(i) we have H}(R)= Hj(R)— Lﬁ(l —T))(S—R)+ cz(Sq— R)
90
H;3(R).

(ii) It is able to be H)(R) <0 for a suitable c;.

w n(ct) (i)

(iv) H!'(z) >0 for all i (1 <i<4).

¢(0), hence Hj(R) >
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(V) lim H'(z) = ¢; + h.
Z—00
Now we give an example of the mathematical inventory model in section 1 if H5(R) <0

and we put x| = inf{z | H}(z) > 0}.

The research of the paper we generously supported by a Grant from Sogo Kenkyu-sho
(Institute of Advanced Studies), Hiroshima Shudo University in 2001-2003.
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