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Abstract

A mathematical model of the probabilistic inventory problems is presented and an analysis

on the economic ordering quantity in N-period inventory problems is studied. The optimum

policy of multistage problems is discussed under the assumption that the total cost function of

single period follows some conditions. To seek the optimum policies we make functions and

using them we are able to decide the economic ordering quantity. We give an example which

follows our mathematical model.
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Introduction

Mathematical inventory models with a piecewise cost function have been studied in

Kodama and Sakaguchi (2001a, 2001b, 2001c, 2002), Sakaguchi and Kodama (2002a, 2002c)

and various properties of an optimum policy in its inventory systems are obtained. It is also

attempted to express the optimum function by closed forms with known cost functions and

some su‰cient conditions on cost functions are found to ensure simple treatments on an

optimum policy. Our decision criterion is the minimization of expected costs which include

the ordering, holding, and shortage costs.

In this paper we review an example in Sakaguchi and Kodama (2002b) which inspired us

to make a generalization of the inventory model. Let x be the amount on hand before an

order is placed and let z be the amount on hand in initial period after an order is received. In

the probabilistic inventory problems of single period with demand B we would make decisions

of ordering quatities to minimize the expectation EfCðB; zÞg of its total cost. We define the

function HðzÞ by the equation EfCðB; zÞg ¼ �cxþHðzÞ in order to analyze the inventory

system, where c is the purchasing cost per unit. The assumptions of the former models are as

follows.

Let R1; � � � ;Rm be a sequence of real numbers such that R1 < � � � < Rm. Let
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HiðzÞ ð2 � i � mÞ be real valued-functions defined on ½Ri�1; Ri�, and H1ðzÞ is defined on

ð�1; R1� and Hmþ1ðzÞ is defined on ½Rm; 1�. Abbreviate ð�1; R1� to ½R0; R1� and

½Rm; 1Þ to ½Rm; Rmþ1�. Assume that for all i with 1 � i � mþ 1, HiðzÞ has a continuous

second derivative on ½Ri�1; Ri�, and it is a convex function on ½Ri�1; Ri� which means by the

condition that H 00
i ðzÞ � 0 on ðRi�1; RiÞ. We assume that H 0

�ðRiÞ � H 0
þðRiÞ for all i,

lim
z!�1H 0

1ðzÞ < 0 and lim
z!1H 0

mþ1ðzÞ > c: Now we set

HðzÞ ¼ HiðzÞ for z 2 ðRi�1; Ri�:

The example in Sakaguchi and Kodama (2002b) which is simple does not satisfy these

conditions in general. In this paper we take some of the assumptions such that the

mathmatical model covers its example and we may still apply the developed theory. By the

method of the dynamic programming we investigate the optimum ordering quantity of

multiperiod problems provided we know about the function HðzÞ.
Let f1ðxÞ be the minimal expectation of the total cost with single period. Then we may

write

f1ðxÞ ¼ min
z�x

f�cxþHðzÞg:

Let �ðbÞ be the probability density function of demand B. In multiperiod models we suppose

that �ðbÞ remains unchanged from period to period and demands in each period are inde-

pendent. We should take in the discounted value of money in this case. That is, if �ð< 1Þ is
the discount factor per period and fnðxÞ is the discount expected loss for n-period inventory

model when an optimum policy is used at each purchaing opportunity, then

fnðxÞ ¼ min
z�x

�
� cxþHðzÞ þ �

Z 1

0

fn�1ðz� bÞ�ðbÞdb
�
:

We present the fundamental analysis of our model in Theorem 1.6 and a method to get the

optimum quantity in Theorem 1.7. An example which follows our model is shown in section 2.

1. Mathematical models

Let c; � be real numbers with 0 < c; 0 < � < 1. Let �ðbÞ be the density function of a

real random variable B which means demand and we assume that �ðbÞ is a continuous

function on ½0; 1Þ with �ðbÞ ¼ 0 for b < 0. Let �ðbÞ be its distribution function. We let

HðzÞ be a function on R, which suggests that the expectation of the total cost in the
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probabilistic inventory problems of single period is �cxþHðzÞ.
Throughout this section we assume the following conditions on HðzÞ.
(i) HðzÞ is a piecewise continuous function on R and HðzÞ has a minimal value at

z ¼ �xx1. More precisely if z < �xx1 then HðzÞ > Hð�xx1Þ and if �xx1 � z then Hð�xx1Þ � HðzÞ.
(ii) Let R1; � � � ;Rm be a sequence of real numbers such that R1 < � � � < Rm and

R1 � �xx1 < R2. Let HiðzÞ ð1 � i � m� 1Þ be real valued-functions defined on

½Ri; Riþ1�, and let HmðzÞ be defined on ½Rm; 1Þ. We abbreviate ½Rm; 1Þ to

½Rm; Rmþ1�. We suppose that HiðzÞ ð1 � i � mÞ has a continuous derivative on

½Ri; Riþ1�, and we assume

HðzÞ ¼ HiðzÞ if z 2 ½Ri; Riþ1� ð1 � i � mÞ;

which leads us that HðzÞ is continuous on ½R1; 1Þ.
(iii) H 0

þðzÞ is non-decreasing on ½�xx1; 1Þ.
(iv) We have lim

z!1H 0ðzÞ > c.

Note that H 0ðzÞ is a piecewise continuous on ½R1; 1Þ. For a given real number x and z

we define functions fkðxÞ; FkðzÞ ðk ¼ 1; � � � ;NÞ as follows.

f1ðxÞ ¼ min
z�x

f�cxþHðzÞg;

fkðxÞ ¼ min
z�x

�
� cxþHðzÞ þ �

Z 1

0

fk�1ðz� bÞ�ðbÞdb
�
; k ¼ 2; 3; � � � ;N;

ð1:1Þ

Fk�1ðzÞ ¼ HðzÞ þ �

Z 1

0

fk�1ðz� bÞ�ðbÞdb; f0ð�Þ ¼ 0; k ¼ 1; 2; � � � ;N: ð1:2Þ

As we say in introduction, the assumptions on HðzÞ in this paper implies in essential the

conditions in Kodama and Sakaguchi (2001a, 2001b, 2001c, 2002), Sakaguchi and Kodama

(2002a, 2002c) and we could use the former result.

We consider the inventory problem of one-period. Since

f1ðxÞ ¼
�cxþHð�xx1Þ for x � �xx1;

�cxþHðxÞ for �xx1 � x;

�
ð1:3Þ

we get the optimum ordering quantity in our inventory problem of single period that if

x � �xx1, then order �xx1 � x, otherwise do not order.

Next we study 2-period problems. Since
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F1ðzÞ ¼ HðzÞ þ �

Z 1

0

f1ðz� bÞ�ðbÞdb;

f2ðxÞ ¼ min
z�x

f�cxþHðzÞ þ �

Z 1

0

f1ðz� bÞ�ðbÞdbg

¼ min
z�x

f�cxþ F1ðzÞg;

if we find a number �xx2 such that the function F1ðzÞ has a minimal value at �xx2, then we make a

decision that if x � �xx2, then order �xx2 � x, otherwise do not order. Next if a demand in the

first period is b1, then we may make the decision of the second period as one period

inventory problem with an initial stock maxf�xx2; xg � b1.

Thererfore we shall repeat the above method replacing HðzÞ with F1ðzÞ in order to obtain

the optimum ordering quantity of a 2-period problem. Because z� b � �xx1 if and only if

z� �xx1 � b, we have

f1ðz� bÞ ¼
�cðz� bÞ þHð�xx1Þ for z� �xx1 � b;

�cðz� bÞ þHðz� bÞ for b � z� �xx1:

(
ð1:4Þ

Let m be the mean of �ðbÞ.

Lemma 1.1. F1ðzÞ is piecewise continuous on R and

F1ðzÞ ¼

HðzÞ � �czþ �Hð�xx1Þ þ �cm for z � �xx1;

HðzÞ � �czþ �cmþ �

Z z��xx1

0

Hðz� bÞ�ðbÞdb

þ�Hð�xx1Þ 1� �ðz� �xx1Þð Þ for �xx1 � z;

8>>>><
>>>>:

in particular F1ðzÞ is continuous on ½R1; 1Þ.

Proof. Since we assume that �ðbÞ ¼ 0 for b < 0, it follows from (1.4) that

F1ðzÞ ¼ HðzÞ þ �

Z 1

0

�cðz� bÞ þHð�xx1Þ½ ��ðbÞdb
¼ HðzÞ � �czþ �Hð�xx1Þ þ �cm for z � �xx1;

F1ðzÞ ¼ HðzÞ þ �

Z z��xx1

0

�cðz� bÞ þHðz� bÞ½ ��ðbÞdb
�

þ
Z 1

z��xx1

�cðz� bÞ þHð�xx1Þ½ ��ðbÞdb
�
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¼ HðzÞ � �czþ �cmþ �

Z z��xx1

0

Hðz� bÞ�ðbÞdb
þ �Hð�xx1Þ 1� �ðz� �xx1Þð Þ for �xx1 � z:

Since we assumed that �ðbÞ is a continuous function on ½0; 1Þ, we complete the proof.

By lemma 1.1 we have a derivative of F1ðzÞ (cf. Theorem 2.6 in Sakaguchi and Kodama

(2002a)).

Lemma 1.2. We have

F 0
1þðR1Þ ¼ H 0

þðR1Þ � �c;

F 0
1ðzÞ ¼ H 0ðzÞ � �c for R1 < z < �xx1;

F 0
1ðzÞ ¼ H 0ðzÞ � �cþ �

Z z��xx1

0

H 0ðz� bÞ�ðbÞdb
for z � �xx1 and z 6¼ Ri ð2 � i � mÞ;

F 0
1þðRiÞ ¼ H 0

þðRiÞ � �cþ �

Z Ri��xx1

0

H 0ðRi � bÞ�ðbÞdb ð2 � i � mÞ;

F 0
1�ðRiÞ ¼ H 0

�ðRiÞ � �cþ �

Z Ri��xx1

0

H 0ðRi � bÞ�ðbÞdb ð2 � i � mÞ:

We see that F 0
1ðzÞ exists on ½R1; 1Þ without finite points and F 0

1ðzÞ is piecewise con-

tinuous on ½R1; 1Þ.

Lemma 1.3. We have lim
z!1

F 0
1ðzÞ > c.

Proof. It follows that

lim
z!1F 0

1ðzÞ ¼ lim
z!1H 0ðzÞ � �cþ �

Z 1

0

lim
z!1H 0ðzÞ�ðbÞdb

¼ lim
z!1H 0ðzÞð1þ �Þ � �c > c;

and we finish the proof.

Note that if �xx1 6¼ R1, then F1ð�xx1Þ ¼ ��c < 0 and if �xx1 ¼ R1, then F1þð�xx1Þ ¼ H 0
1þðR1Þ � �c:

Lemma 1.4. Put �xx2 ¼ inffz � �xx1 j F 0
1þðzÞ � 0g. Then we have F1ðzÞ > F1ð�xx2Þ for z < �xx2 and

F1ðzÞ � F1ð�xx2Þ for �xx2 < z.
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Proof. It follows from Lemma 1.3 that there exists a number �xx2 such that

�xx2 ¼ inffz � �xx1 j F 0
1þðzÞ � 0g. We see that if z < �xx1, then F1ðzÞ > F1ð�xx1Þ. In fact,

F1ðzÞ � F1ð�xx1Þ ¼ HðzÞ þ �ðHð�xx1Þ � czÞ þ �cmf g
� Hð�xx1Þ þ �ðHð�xx1Þ � c�xx1Þ þ �cmf g

¼ ðHðzÞ �Hð�xx1ÞÞ þ �cð�xx1 � zÞ > 0:

ð1:5Þ

If �xx1 � z < �xx2 and z 6¼ Ri for any i, then F 0
1ðzÞ < 0. Since F1ðzÞ is a continuous function on

½R1;1Þ, we see F1ðzÞ > Fð�xx2Þ for �xx1 � z < �xx2 by elementary facts.

If �xx2 < z, then F 0
1ðzÞ � 0. Indeed, it follows from Lemma 1.2 that

F 0
1þð�xx2Þ ¼ H 0

þð�xx2Þ � �cþ �

Z �xx2��xx1

0

H 0ð�xx2 � bÞ�ðbÞdb � 0:

Therefore we obtain by Lemma 1.2

F 0
1þðzÞ ¼ H 0

þðzÞ � �cþ �

Z z��xx1

0

H 0ðz� bÞ�ðbÞdb

¼ H 0
þðzÞ � �cþ �

Z �xx2��xx1

0

H 0ðz� bÞ�ðbÞdbþ �

Z z��xx1

�xx2��xx1

H 0ðz� bÞ�ðbÞdb

� H 0
þðzÞ �H 0

þð�xx2Þ þ �

Z �xx2��xx1

0

H 0ðz� bÞ �H 0ð�xx2 � bÞ½ ��ðbÞdb

þ �

Z z��xx1

�xx2��xx1

H 0ðz� bÞ�ðbÞdb:

ð1:6Þ

Since H 0
þðzÞ is non-decresing on ½�xx1; 1Þ, we see that

H 0
þðzÞ �H 0

þð�xx2Þ � 0;

H 0ðz� bÞ �H 0ð�xx2 � bÞ � 0 for 0 � b � �xx2 � �xx1;

z� b 6¼ Ri; �x2x2 � b 6¼ Ri ð2 � i � mÞ;
H 0ðz� bÞ � H 0

þð�xx1Þ � 0 for �xx2 � �xx1 � b � z� �xx1;

z� b 6¼ Ri ð2 � i � mÞ:

ð1:7Þ

Thus we get F 0
1ðzÞ � 0 for �xx2 < z and z 6¼ Ri ð2 � i � mÞ by (1.6) and (1.7). Hence it is also

clear that F1ð�xx2Þ � F1ðzÞ for �xx2 � z. We conclude the proof of the lemma.

Lemma 1.5. We have

f2ðxÞ ¼
�cxþ F1ð�xx2Þ; for x � �xx2;

�cxþ F1ðxÞ; for �xx2 � x:

�

Proof. By (1.1) and (1.2) we see that
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f2ðxÞ ¼ min
z�x

�cxþHðzÞ þ �

Z 1

0

f1ðz� bÞ�ðbÞdb
� �

¼ min
z�x

�cxþ F1ðzÞf g:

Therefore we prove this lemma by Lemma 1.4.

Lemma 1.6. Put F1iðzÞ ¼ F1ðzÞ for z 2 ½Ri; Riþ1� ð1 � i � mÞ. Then F1iðzÞ has a

derivative on ½Ri; Riþ1�.

Lemma 1.7. F 0
1þðzÞ is non-decreaing on ½�xx2; 1Þ.

Proof. Assume �xx2 � z1 < z2. By Lemma 1.2 we see

F 0
1þðz2Þ � F 0

1þðz1Þ ¼ H 0
þðz2Þ �H 0

þðz1Þ

þ �

Z z2��xx1

0

H 0ðz2 � bÞ�ðbÞdb� �

Z z1��xx1

0

H 0ðz1 � bÞ�ðbÞdb

¼ H 0
þðz2Þ �H 0

þðz1Þ þ �

Z z1��xx1

0

H 0ðz2 � bÞ �H 0ðz1 � bÞ½ ��ðbÞdb

þ �

Z z2��xx1

z1��xx1

H 0ðz2 � bÞ�ðbÞdb � 0:

Because H 0
þðzÞ is non-decreasing on ½�xx1; 1Þ,

H 0
þðz2Þ �H 0

þðz1Þ � 0;

H 0ðz2 � bÞ �H 0ðz1 � bÞ � 0 for 0 � b � z1 � �xx1;

z2 � b 6¼ Ri; z1 � b 6¼ Ri ð2 � i � mÞ;
H 0ðz2 � bÞ � H 0

þð�xx1Þ � 0 for z1 � �xx1 � b � z2 � �xx1;

z2 � b 6¼ Ri ð2 � i � mÞ:

We complete the proof.

By induction we get the following theorem because we have assumed F0ðzÞ ¼ HðzÞ.

Theorem 1.8. For each i ð1 � i � NÞ we have the following statements.

(1) We have

FiðzÞ ¼

HðzÞ � �czþ �Fi�1ð�xxiÞ þ �cm for z � �xxi;

HðzÞ � �czþ �cmþ �

Z z��xxi

0

Fi�1ðz� bÞ�ðbÞdb

þ�Fi�1ð�xxiÞ 1� �ðz� �xxiÞð Þ for �xxi � z;

8>>>><
>>>>:
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in particular FiðzÞ is continuous on ½R1; 1Þ.
(ii) We obtain that

F 0
iþðRjÞ ¼ H 0

þðRjÞ � �c; for Rj � �xxi;

F 0
i�ðRjÞ ¼ H 0

�ðRjÞ � �c; for R1 < Rj � �xxi;

F 0
i ðzÞ ¼ H 0ðzÞ � �c for R1 < z < �xxi;

F 0
i ðzÞ ¼ H 0ðzÞ � �cþ �

Z z��xxi

0

F 0
i�1ðz� bÞ�ðbÞdb
for z � �xxi and z 6¼ Rj ð�xxi � RjÞ;

F 0
iþðRjÞ ¼ H 0

þðRjÞ � �cþ �

Z Rj��xxi

0

F 0
i�1ðRj � bÞ�ðbÞdb for �xxi � Rj;

F 0
i�ðRjÞ ¼ H 0

�ðRjÞ � �cþ �

Z Rj��xxi

0

F 0
i�1ðRj � bÞ�ðbÞdb for �xxi � Rj:

(iii) We have lim
z!1F 0

i ðzÞ > c.

(iv) There is a number �xxiþ1 such that �xxiþ1 ¼ inffz � �xxi j F 0
iþðzÞ � 0g.

(v) FiðzÞ is a piecewise continuous function on R and FiðzÞ has a minimal value at

z ¼ �xxiþ1. More precisely if z < �xxiþ1 then FiðzÞ > Fið�xxiþ1Þ and if �xxiþ1 < z then

Fið�xxiÞ � FiðzÞ.
(vi) We obtain that

fiþ1ðxÞ ¼
�cxþ Fið�xxiþ1Þ; for x � �xxiþ1;

�cxþ FiðxÞ; for �xxiþ1 � x:

�

(vii) Put FijðzÞ ¼ FiðzÞ for z 2 ½Rj; Rjþ1� ð1 � j � mÞ. Then FijðzÞ has a derivative on

½Rj; Rjþ1�.
(viii) F 0

iþðzÞ is a non-decreasing function on ½�xxiþ1; 1Þ.

Proof. It follows from lemmas above that this theorem holds in the case i ¼ 1. If

i ¼ 2, then we see that the assumptions on HðzÞ lead us to the ones on F1ðzÞ. Thus this

theorem is true when i ¼ 2. By the induction we may prove the theorem.

Theorem 1.9. In our mathematical model of dynamic inventory problems the optimum ordering

quantity of N-period is if the initial stock x is less than �xxN, then order x� �xxN and otherwise do

not order.

Proof. By (v) in Theorem 1.8 we may make decisions in this theorem and we finish the

proof.
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We may apply the following analysis to this inventory model and we study the optimum

policies by the results of Sakaguchi and Kodama (2002c).

Theorem 1.10 (Theorem 2.1 in Sakaguchi and Kodama (2002c)). Let R be a real num-

ber. Then the following statements hold:

(1) If H 0
þðRÞ � �c, then F 0

kþðRÞ � 0 for all k 1 � k � N � 1.

(2) If 1 � k � N � 1 and F 0
ðk�1ÞþðRÞ � 0; then F 0

kþðRÞ ¼ H 0
þðRÞ � �c .

(3) If 1 � k � N � 1; H 0
þðRÞ < �c and F 0

ðk�1ÞþðRÞ � 0; then F 0
kþðRÞ < 0.

(4) If H 0
þðRÞ < 0, then F 0

kþðRÞ < 0 for all k 1 � k � N � 1.

(5) If 1 � k � N � 1 and H 0
þðRÞ <

�cð1þ �þ � � � þ �k�1Þ
1þ �þ � � � þ �k

, then F 0
kþðRÞ < 0 .

(6) If 1 � k � N � 1 and H 0
þðRÞ ¼

�cð1þ �þ � � � þ �k�1Þ
1þ �þ � � � þ �k

, then F 0
kþðRÞ � 0 .

Corollary. Let p be an integer with 1 � p � m. Then we have:

(1) If H 0
þðRpÞ � �c , then �xxk � Rp for all k 1 � k � N.

(2) If H 0
þðRpÞ < 0 , then Rp < �xxk for all k 1 � k � N.

(3) If H 0
þðRpÞ < �cð1þ �þ � � � þ �l�1Þ

1þ �þ � � � þ �l
, then Rp < �xxk for all k l þ 1 � k � N.

2. An example

We shall consider an example of the probabilistic multi-period inventory model with zero

delivery lag, backlogging of demand and linear purchasing cost ½cðyÞ ¼ cy� in this section.

Model and Notations:

(1) The multi-period model with backlogging of demand will be investigated under

general demand without setup cost. The stock replenishment occurs instanta-

neously.

(2) Regular ordering takes at the beginning of each period, purchasing cost c1 is charged

and the period length is t. Let x be the initial stock level and let z be the amount

on hand in initial period after an order is received. That means that the amount of

a regular order is z� x.

(3) Let h and p be the holding and shortage costs per unit per period, respectively. We

assume c1 < p.
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(4) Demand B in each period is a nonnegative random variable with a known dis-

tribution �ðbÞ and its density �ðbÞ. The functions �ðbÞ and �ðbÞ remain unchanged

from period to period and demands in each period are independent.

(5) The additional orders in the case the amount in inventory is less than R at given t0

(0 < t0 < t) in each period are allowed, and the stock is replenished to the amount in

inventory at t0 is equal to S. Let c2 (c1 � c2 )be the cost per unit of the additional

orders, respectively.

(6) Demand occurs according to a general function gðT=tÞb during the period t. Let

the amount in inventory at time T be designated by QðTÞ. Then

QðTÞ ¼ z� gðT=tÞb; ð0 � T � tÞ; ð2:1Þ

where gð0Þ ¼ 0; gð1Þ ¼ 1 and dgðxÞ=dx > 0 ð0 � x � 1Þ. In other words, demand

occurs according to gðT=tÞb, (0 � T � t). If b � s, then there exists an unique

positive T=t such that s ¼ gðT=tÞb. Let it be designated by T=t ¼ g�1ðs=bÞ.
(7) The total cost is the sum of the purchasing cost, the holding cost, the shortage cost

and the additional purchasing cost and we search the amount of a regular order at

which the expectation of the sum is minimal.

(8) We denote � by the discount factor (0 < � < 1). Let fnðxÞ be the discount expected

loss for n-period inventory model provided that an optimal policy is used at each

purchaing opportunity, where x is the initial stock level.

Since the unifilled demand is backlogged, it is necessary to investigate in the case when z

is negative.

Figure 1

Let T0 ¼ t0

t
, g0 ¼ gðT0Þ. Then 0 < T0 < 1; 0 < g0 < 1. For the sake of simplicity we add

the conditions that g0 � 1

2
and R � g0S and we assume that �ðbÞ has a derivative on ð0; 1Þ.
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Let’s consider the sequence 0; R;
R

1� g0
; Rþ g0S

1� g0
. We set that

GðyÞ ¼
Z y

0

gðTÞdT and m ¼ EðBÞ:

Put the constants di ð1 � i � 4Þ as follows.

d1 ¼
Z S

1�g0

t0

ð1� T0ÞðS þ g0bÞ � Gð1Þ � GðT0Þð Þ½ ��ðbÞdb

d2 ¼
Z S

1�g0

0

ð1� T0ÞðS þ g0bÞ � Gð1Þ � GðT0Þð Þ½ ��ðbÞdb

d3 ¼
Z 1

S
1�g0

g�1 ðS=bÞ þ g0ð Þ � T0

� �ðS þ g0bÞ
�

þ GðT0Þ � G g�1 ðS=bÞ þ g0ð Þ� �� �
b
�
�ðbÞdb

d4 ¼
Z 1

S
1�g0

g�1 ðS=bÞ þ g0ð Þ � 1
� �ðS þ g0bÞ
�

þ Gð1Þ � G g�1 ðS=bÞ þ g0ð Þ� �� �
b
�
�ðbÞdb

ð2:2Þ

We let the functions wi ð1 � i � 11Þ be

w1ðzÞ ¼
Z 1

0

GðT0Þb� T0z½ ��ðbÞdb;

w2ðzÞ ¼
Z z

g0

0

T0z� GðT0Þb½ ��ðbÞdb;

w3ðzÞ ¼
Z 1

z
g0

GðT0Þb� T0z½ ��ðbÞdb;

w4ðzÞ ¼
Z 1

z
g0

zg�1ðz=bÞ � G g�1ðz=bÞ� �
b

� �
�ðbÞdb;

w5ðzÞ ¼
Z z

0

ð1� T0Þz� Gð1Þ � GðT0Þð Þb½ ��ðbÞdb;

w6ðzÞ ¼
Z z�R

g0

0

ð1� T0Þz� Gð1Þ � GðT0Þð Þb½ ��ðbÞdb;

w7ðzÞ ¼
Z S

1�g0

z�R
g0

ð1� T0ÞðS þ g0bÞ � Gð1Þ � GðT0Þð Þb½ ��ðbÞdb;

w8ðzÞ ¼
Z z�R

g0

z

g�1 z=bð Þ � T0

� �
zþ GðT0Þ � Gðg�1 z=bð Þ� �

b
� �

�ðbÞdb;

w9ðzÞ ¼
Z z�R

g0

z

g�1 z=bð Þ � 1
� �

zþ Gð1Þ � Gðg�1 z=bð Þ� �
b

� �
�ðbÞdb;

w10ðzÞ ¼ S þ g0m� z;

w11ðzÞ ¼
Z 1

z�R
g0

½S þ g0b� z��ðbÞdb

ð2:3Þ
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We also set the functions HiðzÞ ð1 � i � 5 Þ as follows.

H1ðzÞ ¼ c1zþ pw1ðzÞ þ c2w10ðzÞ þ hðd1 þ d3Þ þ pd4; for z � 0;

H2ðzÞ ¼ c1zþ hw2ðzÞ þ ðhþ pÞw4ðzÞ þ pw3ðzÞ þ c2w10ðzÞ
þ hðd2 þ d3Þ þ pd4; for 0 � z � R;

H3ðzÞ ¼ c1zþ hðw2ðzÞ þ w6ðzÞ þ w7ðzÞÞ þ ðhþ pÞw4ðzÞ þ pw3ðzÞ
þ c2w11ðzÞ þ hd3 þ pd4; for R � z � R

1� g0
;

H4ðzÞ ¼ c1zþ hðw2ðzÞ þ w5ðzÞ þ w7ðzÞ þ w8ðzÞÞ þ ðhþ pÞw4ðzÞ
þ pðw3ðzÞ þ w9ðzÞÞ þ c2w11ðzÞ þ hd3 þ pd4; for

R

1� g0
� z � Rþ g0S

1� g0
;

H5ðzÞ ¼ c1zþ hðw2ðzÞ þ w5ðzÞ þ w8ðzÞÞ þ ðhþ pÞw4ðzÞ þ pðw3ðzÞ þ w9ðzÞÞ
þ c2w11ðzÞ þ hd3 þ pd4; for Rþ g0S

1� g0
� z:

ð2:4Þ

Then HiðzÞ ð1 � i � 5Þ have a second derivative on the suitable interval. The expected

cost of single period is given by

EfCðB; zÞg ¼ c1ðz� xÞ þ hEfholding quantityg þ pEfshortage quantityg
þ c2Efadditional purchasing quantityg:

We define the function HðzÞ by the equation EfCðB; zÞg ¼ �c1xþHðzÞ. Then we have

the following proposition.

Proposition 2.1. ðSakaguchi and Kodama ð2002bÞ Þ We have

HðzÞ ¼

H1ðzÞ if z � 0 ;

H2ðzÞ if 0 � z � R ;

H3ðzÞ if R � z � R

1� g0
;

H4ðzÞ if
R

1� g0
� z � Rþ g0S

1� g0
;

H5ðzÞ if Rþ g0S

1� g0
� z :

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:5Þ

Now we shall show an example which needs our model in section 1. For that sake we

set the density function �ðbÞ as follows.

�ðbÞ ¼

0 if b < 0 ;

3ð1� g0Þ3
R3

b� R

1� g0

� �2

if 0 � b <
R

1� g0
;

0 if
R

1� g0
� b :

8>>>><
>>>>:

ð2:6Þ
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Then we see that w7ðzÞ ¼ 0; w11ðzÞ ¼ 0 by (2.3), and hence H4ðzÞ ¼ H5ðzÞ by (2.4). We

reset the function HðzÞ.

Proposition 2.2. We obtain that

HðzÞ ¼

H1ðzÞ if z � 0 ;

H2ðzÞ if 0 � z � R ;

H3ðzÞ if R � z � R

1� g0
;

H4ðzÞ if
R

1� g0
� z:

8>>>>>>><
>>>>>>>:

ð2:7Þ

The derivarives of HiðzÞ were shown in Sakaguchi and Kodama (2002b) when �ðbÞ is in

general. We obtain the derivatives in this case by these facts.

Proposition 2.3. Under the assumption 2.6 we have

H 0
1ðzÞ ¼ c1 � pT0 � c2 if z � 0;

H2ðzÞ ¼ c1 þ ðhþ pÞ T0�
z

g0

� �
þ
Z 1

z
g0

g�1 z

b

	 

�ðbÞdb

" #
� pT0 � c2 if 0 � z � R;

H 0
3ðzÞ ¼ c1 þ h ð1� T0Þ� z� R

g0

� �
þ T0�

z

g0

� �
þ
Z 1

z
g0

g�1 z

b

	 

�ðbÞdb

"

� 1

g0
ð1� T0ÞðS � RÞ� z� R

g0

� ��
þ p

Z 1

z
g0

g�1 z

b

	 

�ðbÞdb� T0 þ T0�

z

g0

� �" #

þ c2 �
z� R

g0

� �
� 1� S � R

g0
�

z� R

g0

� �� �
; if R � z � R

1� g0
;

H 0
4ðzÞ ¼ c1 þ h if

R

1� g0
� z:

By Proposition 2.3 we obtain the following proposition.

Proposition 2.4. Let �ðbÞ be as (2.6). Then we have the following statements,

(i) we have H 0
3ðRÞ ¼ H 0

2ðRÞ �
h

g0
ð1� T0ÞðS � RÞ þ c2ðS � RÞ

g0

� �
� 0ð Þ, hence H 0

2ðRÞ >
H 0

3ðRÞ.
(ii) It is able to be H 0

2ðRÞ < 0 for a suitable c2.

(iii) H 0
3

R

1� g0

� �
¼ H 0

4

R

1� g0

� �
.

(iv) H 00
i ðzÞ � 0 for all i ð1 � i � 4Þ.
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(V) lim
z!1H 0ðzÞ ¼ c1 þ h.

Now we give an example of the mathematical inventory model in section 1 if H 0
2ðRÞ < 0

and we put �xx1 ¼ inffz j H 0
3ðzÞ � 0g.

The research of the paper we generously supported by a Grant from Sogo Kenkyu-sho

(Institute of Advanced Studies), Hiroshima Shudo University in 2001–2003.
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