«Note»
Figures for Business Cycles (denoted B) in Kamiryo Endogenous World Table (KEWT 1.07) Data-Sets 1960–2005 by Country and by Sector

Hideyuki Kamiryo
(Received on April 23, 2007)

For Business cycle Tables in this file, where output=national disposable income:

Figure B1 The capital-output ratio, the elasticity of substitution $sigma$, and the rate of tech. progress in flow / the growth rate of TFP
Figure B2 The relative share of capital, the rate of return, and the growth rate of net investment in the private sector
Figure B3 The relative share of capital $alpha$ by sector and the rate of return in the government sector r_G
Figure B4 The relationship between $alpha/(1-alpha)$ and (r/w) connected with the capital-labor ratio
Figure B5 The rates of change in the rate of return, the interest rate of central bank $(r_{cb}), CPI$, and the theoretical wage rate w
Figure B6 Trend of the relative share of capital in the private sector and its regression equations
Figure B7 Trend of the growth rate of net investment in the private sector and its regression equations
Figure B8 Business cycle of the private sector derived from net investment in the private sector, considering the trend of $alpha$ in the private sector
Figure B9 Investment and consumption, $mu=K/C$ and the marginal $Delta mu=Delta K/Delta C$
Figure B10 Multiplier as $Delta Y/Delta K$, the capital-output ratio, and the rate of technological progress
Figure B11 Multiplier, $Delta Y/Delta K$, as the inverse number of the marginal capital-output ratio, by sector
Figure B12 Consumption-Multiplier, $Delta C/Delta K$, as the product of M and $Delta C/Delta Y$ by sector
Figure B13 The relationship between the growth rate of investment and the $S-I$ in the private sector
Figure B14 The test of crowding-out due to huge budget deficit by comparing two growth rates of investment, $g_{(PRI)}$ and g_I
Figure B15 Multiplier and Consumption-Multiplier versus the growth rate of investment as an indicator of business cycle in the short run
Figure B16 Turning point of business cycle using the propensity to consume; compared
Hideyuki Kamiryo: Figures for Business Cycles (denoted B) in Kamiryo Endogenous World Table (KEWT 1.07) Data-Sets 1960–2005 by Country and by Sector

with consumption multiplier and the marginal capital-output ratio

For Main Tables in another file, where output=national disposable income:

Figure M1 The difference between saving and net investment divided by output by sector
Figure M2 The rate of change in the difference between saving and net investment by sector
Figure M3 The growth rate of per capita output by sector
Figure M4 The ratio of net investment to output by sector
Figure M5 The growth rate of net investment to output by sector
Figure M6 The growth rate of net investment \(I=\Delta K \) by sector
Figure M7 The ratio of quantitative investment to investment at convergence \(beta^* \) by sector
Figure M8 The growth rate of technological progress in flow at convergence \(g_{A^*} \) by sector
Figure M9 The growth rate of technological progress in TFP, \(g_{TFP} \), by sector
Figure M10 \(delta \) as a parameter that neutralizes DRC at the current situation by sector
Figure M11 The years for convergence \(1/\lambda = (1-\alpha)n+(1-\delta)g_{A^*} \) by sector
Figure M12 The marginal relative share of capital and the marginal propensity to consume, both in the private sector
Figure M13 The rate of technological progress and the consumption-multiplier \(\Delta C/\Delta K \)
Figure M14 The propensity to consume and the relative share of capital, and each marginal ratio, \(\Delta C/\Delta Y \) and \(\Delta I/\Delta Y \)
Figure B1 The capital-output ratio, the elasticity of substitution σ, and g_A/g_{TFP}: **Russia** 1993-2005

Note: The elasticity of substitution is shown as $\eta_{k/(r/w)} = (\Delta k/k)/(\Delta r/w)$. When a Cobb-Douglas production function is given, $\sigma=1$ and $g_A = g_{TFP}$ holds by year.

Figure B1 The capital-output ratio, the elasticity of substitution σ, and the rate of tech. progress in flow / the growth rate of TFP (1)
Figure B1 The capital-output ratio, the elasticity of substitution σ, and the rate of tech. progress in flow / the growth rate of TFP (2)
Figure B1 The capital-output ratio, the elasticity of substitution σ, and the rate of tech. progress in flow / the growth rate of TFP (3)
Figure B2 The relative share of capital, the rate of return, and the growth rate of net investment in the private sector (1)
Figure B2 The relative share of capital, the rate of return, and the growth rate of net investment in the private sector (2)
The relative share of capital α, the rate of return, and the growth rate of net investment of the private sector:

India 1960-2005

Brazil 1975-2005

Mexico 1977-2005

Figure B2 The relative share of capital, the rate of return, and the growth rate of net investment in the private sector (3)
Figure B3 The relative share of capital α by sector and the rate of return in the government sector r_G (1)
The relative share of capital by sector and the rate of return of the government sector: **Japan** 1960–2005

Figure B3 The relative share of capital *alpha* by sector and the rate of return of the government sector *r_G* (2)
Figure B3 The relative share of capital α by sector and the rate of return of the government sector r_G (3)
Hideyuki Kamiryo: Figures for Business Cycles (denoted B) in Kamiryo Endogenous World Table (KEWT 1.07) Data-Sets 1960–2005 by Country and by Sector

Note: This figure shows my equation of $(1-\alpha) = (C/Y)(\rhoo/\rho)$, where ρo is the discount rate of consumption. This equation is comparable to Jan Tinbergen’s (1956, Graph 1). Tinbergen directly applies a utility function into C/K, where the valuation by the individual (or the nation) is expressed by utility: $v'=1/C$.

Figure B4 The relationship between $\alpha/(1-\alpha)$ and (r/w) connected with the capital-labor ratio (1)
Figure B4 The relationship between $\alpha/(1-\alpha)$ and (r/w) connected with the capital-labor ratio (2)
Figure B4 The relationship between $\alpha/(1-\alpha)$ and (r/w) connected with the capital-labor ratio (3)
Figure B5 The rates of change in the rate of return, the interest rate of central bank (r_{CB}), CPI, and the theoretical wage rate w (1)
Figure B5 The rates of change in the rate of return, the interest rate of central bank (r_{cb}), CPI, and the theoretical wage rate w (2)

201
Figure B5 The rates of change in the rate of return, the interest rate of central bank (r_{CB}), CPI, and the theoretical wage rate w (3)
Figure B6 Trend of the relative share of capital in the private sector and its regression equations (1)
Figure B6 Trend of the relative share of capital in the private sector and its regression equations (2)
Figure B6 Trend of the relative share of capital in the private sector and its regression equations (3)
Figure B7 Trend of the growth rate of net investment in the private sector and its regression equations (1)
Figure B7 Trend of the growth rate of net investment in the private sector and its regression equations (2)
Figure B7 Trend of the growth rate of net investment in the private sector and its regression equations (3)
Figure B8 Business cycle of the private sector derived from net investment in the private sector, considering the trend of alpha in the private sector (1)
Figure B8 Business cycle of the private sector derived from net investment in the private sector, considering the trend of alpha in the private sector (2)
Figure B8 Business cycle of the private sector derived from net investment in the private sector, considering the trend of alpha in the private sector (3)
Figure B9 Investment and consumption, μ=K/C and the marginal Δμ=ΔK/ΔC (1)
Figure B9 Investment and consumption, $\mu=K/C$ and the marginal $\Delta\mu=\Delta K/\Delta C$ (2)
Figure B9 Investment and consumption, $\mu=K/C$ and the marginal $\Delta\mu=\Delta K/\Delta C$ (3)
Figure B10 Multiplier as $\Delta Y/\Delta K$, the capital-output ratio, and the rate of technological progress (1)
Figure B10 Multiplier as ΔY/ΔK, the capital-output ratio, and the rate of technological progress (2)
Figure B10 Multiplier as $\Delta Y/\Delta K$, the capital-output ratio, and the rate of technological progress (3)
Figure B11 Multiplier, $\Delta Y/\Delta K$, as the inverse number of the marginal capital-output ratio, by sector (1)
Figure B11 Multiplier, $\Delta Y/\Delta K$, as the inverse number of the marginal capital-output ratio, by sector (2)
Figure B11 Multiplier, $\Delta Y/\Delta K$, as the inverse number of the marginal capital-output ratio, by sector (3)
Hideyuki Kamiryo: Figures for Business Cycles (denoted B) in Kamiryo Endogenous World Table (KEWT 1.07) Data-Sets 1960–2005 by Country and by Sector

Figure B12 Consumption-Multiplier $\Delta C/\Delta K$, as the product of M and $\Delta C/\Delta Y$ by sector (1)
Figure B12 Consumption-Multiplier, $\Delta C/\Delta K$, as the product of M and $\Delta C/\Delta Y$ by sector (2)
Figure B12 Consumption-Multiplier, ΔC/ΔK, as the product of M and ΔC/ΔY by sector (3)
Figure B13 The relationship between the growth rate of investment and the $S-I$ in the private sector (1)
The growth rate of investment $g_{ PRI }$ and the difference between saving and investment in the private sector:

Japan 1960-2005

\[
y = 9.0693x - 1.7954 \quad \text{and} \quad y = -184.55x^2 + 75.8x - 7.5227
\]

$R^2 = 0.2402 \quad \text{and} \quad R^2 = 0.3214$

The US 1960-2005

\[
y = 2.8216x^2 - 0.4137x + 0.1372
\]

$R^2 = 0.0109$

\[
y = 0.3773x + 0.0945
\]

$R^2 = 0.0082$

Australia 1960-2005

\[
y = 0.8133x - 0.0245
\]

$R^2 = 0.0505$

\[
y = -16.397x^2 + 5.8023x - 0.3952
\]

$R^2 = 0.0637$

Figure B13 The relationship between the growth rate of investment and the S–I in the private sector (2)
Figure B13 The relationship between the growth rate of investment and the S–I in the private sector (3)
Figure B14 The test of crowding-out due to huge budget deficit by comparing two growth rates of investment, g_{1PRI} and g_I (1)
Figure B14 The test of crowding-out due to huge budget deficit by comparing two growth rates of investment, $g_{(PRI)}$ and g_I (2)
Figure B14 The test of crowding-out due to huge budget deficit by comparing two growth rates of investment, $g_{I(PR)}$ and g_I (3)
Figure B15 Multiplier and Consumption-Multiplier versus the growth rate of investment as an indicator of business cycle in the short run (1)
Figure B15 Multiplier and Consumption-Multiplier versus the growth rate of investment as an indicator of business cycle in the short run (2)
Figure B15 Multiplier and Consumption-Multiplier versus the growth rate of investment as an indicator of business cycle in the short run (3)
Figure B16 Turning point of business cycle using the propensity to consume: compared with consumption multiplier and the marginal capital-output ratio (1)
Figure B16 Turning point of business cycle using the propensity to consume: compared with consumption multiplier and the marginal capital-output ratio (2)
Figure B16 Turning point of business cycle using the propensity to consume: compared with consumption multiplier and the marginal capital-output ratio (3)