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Let R be a local ring with infinite residue field and 7 an ideal in R. Huckaba [2] showed
that the grade of the ideal gr;(R), in the associated graded ring gr;(R) of R with respect to [
plays an important role in deciding whether the reduction number of I is independent or
not. In order to study the theory of reductions he investigated properties of the associated
graded ring by making use of minimal reductions. In this paper we will develop this concept
by using the results in Valabrega and Valla [9] which gives us much information about regular
sequences in associated rings. The main result may be stated as follows. If (xj, ..., x, )R is a
minimal reduction of I with £(I)=r, then grade gr/(R),=grade (x], ..., x;)gri(R) where x; is the
initial form of x; in gr,(R). |

Let I be the integral closure of I. We shall consider the inequality grade gr;(R), < grade
gr;(R),. This inequality does not hold in general. In the case the analytic spread of I is
one, the author studied in [7] an ideal I which is the smallest ideal with properties that
IS 1< and grade gr;(R), =1. We will search some sufficient conditions in this paper
that the inequality holds.

For an ideal [ in a noetherian ring R we denote by gr,(R) the associated graded ring
@, I" / I of R with respect to . If x e I" and x ¢ I"", then we put x*=x+I1""in 1"/ ™'
and we call it the initial form of x. For x € ﬁl ", put x’=0. LetJ be an ideal in R. We
shall denote by J* the homogeneous ideal of ;,(R) generated by all the initial forms of the
_ elements in J. For an ideal I, I denotes the integral closure of /. In [6] Northcott and Rees
introduced and developed the concept of reductions. It is shown there that if (R, M) is a local
ring with R/M infinite, then every ideal / contains a minimal reduction and any minimal
reduction of 7 has a minimal basis consisting of ¢(/) elements, where /() is the analytic spread
of the ideal /. It is well known that an ideal J with J c [ is a reduction of I if and only if
J=1. Anideal I is said to be a regular ideal if grade > 0.

Throughout this paper R will be denote a noetherian commutative ring with identity.
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Let R=®,,,R, be a graded ring and M =®,,,M, a graded R-module. Then we
denote the graded submodule @,,. M, of M by M,.. where c is an integer. In particular R,
denotes R>;. Theorem 1.1 in Valabrega and Valla [9] suggests the following proposition (the
case ¢ =1 in the following Proposition 1 is Theorem 1.1 in [9]). The virtually identical proof

shall be omitted.

Proposition 1. Let I and J be ideals in a ring R with J C I and c be a positive integer.
Suppose that J = (xy, ..., x,)R and x; & 1° for every i. Then Ji =(xi,...,x:)gri(R)s. in
gri(R) if and only if JI"™' = JNO\I" for all n 2 c.

Corollary 2. Let (R, M) be a local ring with infinite residue field, and let I be an ideal of R.
Let J be a minimal reduction of I. Suppose J = (xy, ..., x,)R where r={4(I). Then there is an

integer ¢ such that J5, =(x{, ..., x7)gr (R)s.

Proof. By Lemma 3 of section 1 in [6], for every i, x; ¢ MI and so x; ¢/ 2. Since J is
a reduction of I, there exists an integer ¢ such that JI =], Then, for all n > ¢, we know

JI™" = I" and hence JI"' = JNI". Therefore this corollary follows from Proposition 1.

Let I be an ideal in R and s be a positive integer. If x eI’ —I'", then we have a

sequence

0—— gri(R)—=— gr (R)——> gryx (R/ xR)——0
where the x* above the arrow identifies the map as multiplication by x*. Since x"gr;(R)
(xR)", this is a complex.
Proposition 3. Under the assumptions as above, let c be an integer. Then the sequence
0—>g”1 (R)Zc L)ng(R)Zcﬂ ————‘)grllxR(R / xR)?c+s —0

is exact if and only if the following conditions hold:
A I‘NAd™":x)=1"" foralln>c.
) xI°=I"xR.
Proof. The condition (i) means just that 0—— gr;(R)s, x—*>gr,(R)ZC+S is exact.
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Now we see that
Im [7; (R)se —— 87 (R)sess ]
— (xIc +Ic+s+l)/ Ic+s+l @"'(‘B(XI" _+_In+s+1)/1n+x+1 @"'

and
Ker [871(R)sess — 8111 (R T XR) 5005 1 = (XR)3c4s

=(xRNIT+I1NY TP @@ (XRNI™ + 1) I @ ...

Thus the sequence is exact at the middle term if and only if x/” + I"*" = xR 1" + """
for all n 2¢c. By the same method of the proof of Theorem 1.1 in [9], this statement is equiva-
lent to the condition that xI" =xR(1I™" for all n > ¢. Therefore we proved the part “only
if”.

Conversely to prove the part “if”, it is sufficient to show that xI" = xR(\I"" for all n > c,
because the natural map gr;(R)scis —> &7 (R/XR)5.4, is surjective in general. We use
induction on n. By assumption (ii) we may suppose that n>c and xI""' = xRNI"™"" As-
sume yexRNI". Then yexRNI"™"' =xI"", we can write y = xr with rel"". It
follows from n—1 > ¢ and the condition (i) that re(I"":x)(NI° =1". We therefore see

yexI", so xRNI"™ < xI". Hence xR(\I"™ =xI". This completes the proof.

Theorem 4. Let R be a local ring with infinite residue field and I an ideal in R with
ID=r. Let J be a minimal reduction of I. If J=(x|, ..., x,)R, then we have grade

(x1, ..., x7)gr(R) = grade gr; (R)..

Proof. Since J is a reduction of I, we can find an integer m such that JI" =1 m+1 " Then
for all n = m, JI" = I"*" and hence JNI"" =1"". Let [J'], be the set of homogeneous
elements of degree n in J* and put ¢ = m + 1. Accordingly if n > ¢, then [J], =
NI+ 1"/ 1" =1/ 1™, and this impies J:. = gr;(R)s.. By Corollary 2 we see that
(X1, «ooy X7)87 (R)>c = 811 (R)s.

Note that if P is a prime ideal in gr;(R), then (x|, ..., x;)gr(R)s. < P if and only if
(x{,...,x7)gr;(R)yc P. Thus it follows that\/(xl*, e X7 )gr (R) =\/(xl*, ey X7 )8 (R)se .
We also know \/gr,(R); =\/gr,(R)ZC , and so \/(x;“, ey X7 )8 (R) =+/gri(R), . Therefore
we obtain that grade (x7, ..., x;)gr (R) = grade gr;(R)., which completes the proof.

Now we consider the inequality

(*) grade gr;(R), < grade gr;(R),
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where I is an ideal in a local ring R. This inequality does not hold in general, and we shall

study some sufficient conditions under which this holds.

Proposition 5. Let R be a local ring and I an ideal in R. If grade I = grade gr;(R)., then
grade gr;(R), < grade gr;(R)..

Proof. This is a direct consequence of the inequality grade gr,(R), < grade I, which
follows from (b) of Theorem 3.4 in [5].

By virtue of Proposition 3.1 in [9] and Theorem 4, if there is a minimal reduction J of I
such that JI = I then grade gr;(R). =£(I). Thus this is one of the sufficient conditions for
that the inequality (*) holds. In particular it follows from Proposition 5.5 in [4] that if (R, M)
is a regular local ring of dimension 2 with infinite residue field and / is an M-primary ideal,
then the inequality (*) holds.

Let R be a local ring with infinite residue field and let / a regular ideal with /(1) =1.
Suppose that xR is a minimal reduction of /. Then x is a non-zero divisor. We denote by R”
the integral closure of R in total quotient ring Q(R) of R. Then I =xR’(\R and x ¢ I>. By
Corollary 2.7 in [9], we see that x* is a non-zero divisor in gr;(R) if and only if x(D" =
xRN ()" forall n > 1. Put C,=R:p x and we denote by C'™ the set consisting of all
elements r such that r is a finite sum of elements ¢, ---«; with &;, € C, for 1 <j<n. Then

C!"! is an R-module and RS C, cCH c...ccWc...cR".

Theorem 6. Let R be a local ring with infinite residue field and let I a regular ideal with
{D=1. Supoose that xR is a minimal reduction of I. If C?'=CP, then we have

grade gri(R), =1.

Proof. Since xR is also a minimal reduction of I, it follows from Theorem 4 that grade
gr; (R), = grade x"gr; (R),. Thus it is sufficient to prove that x(I)" = xRN ()™ for all
n>1. At first we shall show that xI = xR(\I>. Indeed, if y € xR(I? then y = xr for some
re R. Further y can be expressed in the form y= xZZaia,- where «;, a; € C,, because
I’ =(xR’NR)*. Hence r=xY o;0;, which belongs to xRN R’, and so y=xre xl.

Next Suppose n > 2 and we shall prove that x(1)" =xRN()""'. If ye xRNU)"",
then we may express y in the form y=xr=x""'Ya,---a,,, where reR and «; €C,.

int+1?
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However we can write o &, ®;, =, b, B, for suitable elements B, B, in C, because of
CH=CP. This yields r=x"Y B B, @, - Qi,.» whence re(xR’(\R)", and therefore

ye x(I)". The opposite inclusion is obvious and we complete the proof.

Remark 7. By the former half of the proof of Theorem 6, we see that if xI> = I°, then grade
gr;(R), =1. In fact, x(I)" =(I)"" = xRN (I)"" for all n > 2. In the case dim R = 1, this
fact follows from Theorem 2.1 in [8]. Now we know that if x belongs to the conductor R : R”,

then C'*' = CP!' = R’ because C, = R’. On the other hand x* is a non-zero divisor in the ring

gr: (R)if x"R = xR" for all n>1 since we know that x"™'R:x=x"R for all n > 1 provided x

is a non-zero divisor.

Corollary 8. Let (R, M) be a local ring with R/M infinite and R’ be the integral closure of R
in its total quotient ring. Suppose MR R. If I is an ideal in R with ((I)=1, then
grade gr/(R), < grade gr;(R),.

Proof. Since /(I) = 1, there exists an element x in R such that xR is a minimal reduction.
Thus xR is also a minimal reduction of I because xR=1. By Theorem 4, grade gr;(R), =
grade x"gr;(R) and grade gr;(R).= grade x"gr;(R). Therefore we know that if grade I = 0,
then grade gr/(R), = 0 and that if grade I = 1, then grade gr;(R), =1 by virtue of Thoerem 6

and Remark 7. This completes the proof.

Proposition 9. The following conditions are equivalent for a local ring R.
(i) grade gr;(R), < grade g1 (R). for all ideal with ¢(I) = 1.
(ii) grade I = grade g1 (R). for all ideals I with /() = 1.

Proof. (i) = (i) follows from Proposition 5.

(1) = (ii): Put R(X) = R[X]mx;, where X is a trancendental element over R and M is the
maximal ideal of R. Then we see that grade / = grade /R(X) and the natural isomorphism
grrin (R(X)) = gr;(R)®, R(X) shows that grade &7ircx)(R(X)).= grade gr;(R), and £(IR(X))
= ((I). Thererfore we may assume that the residue field of R is infinite. Let / be an ideal in
R with ¢(I) = 1. Recall that there exists an element x in R such that grade gr;(R), = grade
x"gr;(R). 1If grade I = 0, then x is a zero divisor in R, whence x" is a zero divisor in gr; (R)

and so grade gr;(R),=0. Now, if grade I = 1, then x is a non-zero divisor in R. Put J = xR.
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Then gr,(R)=(R/ xR)[X} and J=1. T1tis clear that grade gr;(R), = 1. Thus we obtain

grade g7;(R). =1 by the assunption and we complete the proof.
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