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1. Introduction

This paper intends to develop the characteristics in the endogenous growth model of
Kamiryo [2002] that introduced “beta” and “delta,” where “beta” is an integrated/weighted
value of the financial parameters, 0,, 6,, and v in Kamiryo [2003] but “delta” is a decision-
making parameter instead of a control parameter in Kamiryo [2003]. This paper and Kamiryo
[2002] both treat delta as a decision-making parameter. Nevertheless, an important idea in
this paper comes from Kamiryo [2003] that started in 1995. The important idea is that the
function of financial and corporate institutions divides saving into corporate and household
saving and also investment into investment in quality and investment in quantity.

My intuition is that if my model could shift delta from a control parameter to a decision-
making parameter, we may specify the relationship between parameters under CRC. Kamiryo
[2002] could not realize this intuition and this paper intends to finalize this intuition. In other
words, CRC can be expressed as a CRC” under an optimum situation to maximize the rate of
profit. And, transitional paths from the current situation, DRC, to CRC’ can be clarified if the
relationship between parameters is clarified under CRC". Thus, I was stimulated so as to
clarify the relationship between beta” and delta’ (each as a decision-making parameter) under
CRC".

This paper, after formulating final equations in my endogenous growth model, first
completes a set of specific equations held under CRC" and second clarifies the relationships
between “beta and delta” under DRC and also between “beta” and delta’ ” under CRC". The
results will show the characteristics of my endogenous growth model. I can use the set of
specific equations in the future to connect these equations with such issues as the Penrose
effect [Uzawa, 1969], the role of monetary policy [Friedman, 1968], and the valuation ratio
[Gorden, 1994].

Let me briefly describe the outline of my model in this paper. My models [2002, 2003]
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formulate an endogenous growth model by using the Cobb-Douglas production function, divid-
ing total investment into investment in quality and quantity, and introducing beta (integrating
the three financial parameters) for resource redistribution, structural reform, and deregulation,
and delta for the improvement in qualitative investment over time (accelerated by R&D and
education costs). These parameters reflect the results of the function of financial and corpo-
rate institutions/sectors and make it possible to change the Solow model to an endogenous
growth model. Both the current and CRC" situations are expressed by using these two deci-
sion-making parameters, beta and delta.

How can my model express transitional paths from the current DRC to the optimum CRC”
situation? My models attain CRC" without an assumption of DRC and/or CRC as in the
literature. The current DRC situation is determined by beta and delta, yet the convergence to
CRC" over time depends on the work of delta. When delta is a decision-making parameter, I
can clarify the path from DRC to CRC’ since delta’ productivity enhancement over time only
neutralizes DRC to CRC". Note that under constant returns to scale I must manage to find
two kinds of DRC, weak and conventional DRC, for the current situation.

In this respect, I indicate here a defect in Kamiryo [2002], which I use as a base of my
model in this paper. Kamiryo [2002] calibrates, using recursive programming, beta and delta
independently under DRC and also calibrates beta” under CRC, by applying the root mean
square error (RMSE) method as a method of ordinary least squares (OLS) and using the actual/
initial growth rate of per capita output, the initial rate of profit, and the initial rate of techno-
logical progress. However, a problem remains unsolved in recursive programming: a specific
delta” under the optimum CRC” situation cannot be calibrated since, for CRC, I have to set
delta is equal to the relative share of profit (delta = alpha) in recursive programming. And
thus, Kamiryo [2002] cannot specify a delta” that accurately corresponds with a calibrated
beta’. My intuition is: if I could formulate the relationship between parameters under CRC"
by using both beta” and delta”, 1 can calculate delta” using a calibrated beta’.

There are numerous CRC situations and I denote the optimum CRC” situation as a situa-
tion where the initial capital-output ratio, €2(0), becomes horizontal over time (Q"= Q(0)) under
a certain value of beta”. In this case, along with the decrease in the capital-output ratio start-
ing with a high capital-output ratio, the rate of profit increases and at the point of Q" = Q(0)
profit is maximized. It is true that if Q"< Q(0) the rate of profit will further increase but beta”
and delta” must further improve by breaking the framework of the initial data. I distinguish

CRC under Q" < Q(0) with CRC" under Q"= Q(0) and I lead this paper from CRC to CRC".



Basics of an Endogenous Growth Model: the Optimum CRC Situation and Conditional Convergence

2. Parameters and equations in the generalized form

This section modifies and corrects the equations formulated in my model [2002] that first
uses beta. 1 call these final equations as the basic equations. [ pay attention to (1) the
discrete time equations that are consistent with the Cobb-Douglas production function and (2)
the generalized form commonly used under DRC and CRC.

Before starting, I stress that the level of technology in the Cobb-Douglas production func-
tion, A(?), is endogenously obtained under two conditions that (1) the initial level of technol-
ogy, A(0), is implicitly expressed using the capital-labour ratio, k(0), and the relative share of
profit, alpha, and the initial capital-output ratio, Q(0),"” and (2) the rate of technological
progress is measured endogenously. My model satisfies these two conditions and as a result, 1

can generally formulate the basic equations, using Y(t) = A(¢)- K(£)* - L()"*.

2.1 Basic equations from quantity to quality

1. Profit: TI(¢) =« - Y(t), where « is the relative share of profit. (D
2. Compensation: W(t)=(1-a)Y(?). (2)
3. Corporate saving: Sy (¢) = sq -II(z), where sy is the retention ratio, and the ratio of corpo-
rate saving to output: sgyy =S (8)/ Y(t) = - sy. 3)
4. Dividends: D(t)=(1-sy)II(2) . 4

5. Household saving: Sy (t) =5y, (1—sp -a)Y (), where sy is the ratio of household saving to
the sum of compensation and dividends (or the rate of household saving), and also the ratio of
household saving to output: Sgyy =S, (£)/Y(#)=s, -(1—--sp). %)
6. Saving: S(t) = Sp(¢) + Su(¢), and the rate of saving to output: s=S/Y =5,y +Ssuy  (6)
7. For investment I use net (after depreciation/capital consumption) investment.” Three
reasons are (1) saving in statistics is separated from depreciation, (2) gross-investment growth
is limited to positive values, and (3) I use the function of financial and corporate sectors for my
new parameters, resulting in investment (which is equal to saving), by adjusting, in a open

economy, the increase in inventories, the balance of payment, and capital transfers. Net

D) AD=Y() K@) L) =k(t)™ 1 (K1) Y(£)) = k()" / (k)] y(£)) = k(1) 1 Q(¢)

2) In more detail, gross investment can be used for both saving and investment as in Kamiryo
[2003], where 1 can distinguish the increase in capital, AK, from gross investment, [ = AK +
depreciation.
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investment (hereafter investment), /, and the rate of investment to output, i, are shown using
saving:
I[(1)=6,-Sy(1)+ Su(t) and i =0, -sguy + sy,
where I(t)=1i-Y(t).
8. The per capita rate of investment: I(¢)/ L(¢t)=1i-y(t) =(6) - Ssusy + Ssmuy )Y(1),
where if 6;= 1 (with no banking costs), i = s = S(t) / Y(¢), and y(¢) = A()k(1)*. @)
The concept of the per capita rate of investment, i-y(t), is essentially required for quali-
tative investment (since qualitative investment is done in corporation with capital and effective
labour: see below soon).
9. Quantitative investment: Iy (¢)=beta-1(t)=7y-0,-Sy(t)+6, Sy (t) and
AK(t)=Ix(t) = ix - Y(1) =ix - A(t)- K(1)* - L()"™, ®)
where iy =B-i=y-0, -sey;y + 6, -ssyy and ﬁ——-—ii_(-lg—)—zﬁ_(—f”
i-y(t) i
10. Per capita quantitative investment:
Per capita capital investment, Ak(t), is obtained using k(¢) = K(t)/L(?):
_K(@+1) K@®+AK(@) K@) +ig-Y(@) _ k(t)+i-y(1)
L(t+1) (+n)-L(z) (I+n)-L(2) l+n '
ix - y()=n-k(1)
1+n

k(t+1)

Thusly, Ak(t)=

)

In recursive programming, I first calculate k(¢t+1)=(k(¢)+ix -y(t))/(1+n) using y(7)
obtained in the previous time.
11. Per capita qualitative investment:

In discrete time, A(f+1)= A(t)+ AA(t))” and,

AA(t) =iy - Y (1) =i4 - A(t)- K()* - L(1)™".

3) If the rate of investment, i, is set as the sum of corporate and government investment, ir,y and ig,y,
0, - Ssury

. i 1} . s
to output, beta is replaced by B =0, " +8; -4~ instead of B=6, " +y
i i i i
case, government ineffectiveness is directly expressed by the parameter, 6;. For this device, I

need data of total investment in the corporate sector, which I will discuss in the future as a two-
sector model using assumptions less than Uzawa’s [1961, 1963] assumptions.
4) I am thankful to Dr. Hiroshi Noma for his suggestion to connect 8,, 6, and 7y directly with beta.

s ) . . L
B =92( S )+y( St ) or B=6, Sstuy +y 01" Ssuiv  Note that this equation is independent
s s i i

of delta, under DRC.
5) Eq. 10 does not divide A(?) by (1 + n) to avoid a double count since Eq. 9 was already divided by
(1 + n). Also, note that A(?) is calculated after calculating k(r).

In this
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This equation holds only when qualitative investment does not improve over time, where
another parameter delta is not introduced yet.

The value of delta is defined as the elasticity of the improvement in qualitative investment
over time with respect to the capital-labour ratio.
12. Per capita qualitative investment introducing delta into my model:

AA(D) =i, -y(t)=1i,-A(t) k() where delta = 0.

(1
AA(t) = % = A(t)-ix - k(1) where delta # 0 and
if delta =0, i, /k(t)5 reduces to iy (which depends on beta). (10)

in = (1= B)i=(1=7)8; -sguy +(1—0;)ssmyy and 1-f= 22 _ 1o
i-y(t) i

For the introduction of delta, it is essential for us to use per capita qualitative investment.
Another parameter, delta, improves qualitative investment over time, where it is essential
for capital and labour to cooperate each other: This implies that qualitative investment must
be expressed by per capita qualitative investment. Note that in the case of quantitative
investment, it is not necessary for us to use per capita quantitative investment. It is just con-
venient for quantitative investment to follow the case of per capita qualitative investment:
y(8) =i, -y(O)+ig - y(1).

I finalize this section by indicating the work of delta. When delta is not introduced into
my model, the convergence to constant returns to capital (CRC) does not occur. Or, using
beta only, my model does not converge. The CRC situation only holds under alpha = delta,
where k(1)*?° =1 and AA(t)=A(t)-i,. The work of delta makes it possible for an open

economy, where S = [, to converge to CRC from DRC.

2.2 Growth rates in the generalized form

In this section, I finalize the rate of technological progress, the growth rates of per
capita capital and capital, and the growth rate of per capita output under any situation.
The relationships between beta and delta will distinguish DRC and CRC situations.  Also, in
these equations, I do not specify the optimum CRC situation, which will be discussed in
Section 3.

Before starting, I will explain the method of recursive programming where I calibrate beta
and delta using the root mean square error (RMSE) method. In recursive programming, a

horizontal capital-output ratio under CRC is confirmed by setting the number of repeating
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times to 300,% but for repeating times, I usually use at least t = 1000. Recursive programming
calibrates (1) both beta and delta under DRC and (2) beta under CRC (since delta under CRC
is calculated using Egs. 19 and 20 in Section 3).” The value of beta is calibrated by assuming
that the actual growth rate of output equals a model growth rate of output and that the actual
rate of return equals a model rate of return. The value of delta is separately calibrated by
assuming that the actual growth rate of per capita output equals a model growth rate of per
capita output and the actual rate of technological progress, 8aacuay, €quals a model rate of
technological progress, where &a(acuary = 8ytactuay — & * k(actual) -

The growth rates commonly used for DRC and CRC situations are summarized as follows:
(1) The rate of technological progress, ga(?):

Starting with Eq. 10,
A(t+1)—- A1) _ iy-y(1)

A(1) A1) k()°

or, using a calibrated beta, g,(t)= (1—ﬂ)-i-k(t)“‘5, where i=sgyy +0, - Sgyy and i, =

ga(t)= =i k(£)*, (1D

A-B)i=1-9)6, -ssuyy +(1—0,)-ssmy. Eq. 11 always holds under any situation (DRC
and CRC). Note that if a beta (or a Q) changes, g(¢) also changes.

Under CRC, where alpha = delta, g,(t) =g, =i,
(2) The growth rates of per capita capital and capital, g,(¢) and g(?):

ix - y(1)—n-k(1)

Since Ak(t)= (see Eq. 9),
1+n
_ky@)-nk@® 1 .. Lepya-l
8= ok len (ix - A@)-k(1)*" = n). (12)

Now let me confirm the consistency between the growth rates of per capita capital, and
capital, gi(f) and g(1):
Using Eq. 8, AK(#) =i -Y(t) =iy - A(t)- K(£)* “L(t)",
AK t . o— -a . o—
8 (=" =i A K™ L0 =i A KO (13)

Now let me confirm the relationship between gx(¢) and g(?):

6) The capital-output ratio under CRC usually converges to a constant value within ¢ = 300, but in
extreme cases it converges at t = 2000 to ¢ = 4000.

7) For beta) RMSEMIN = \/((g}’(model) (300) - gY(acmal) ) / gY(acmal) )2 + ((’Zmodel) (300) - r(aclual) ) / riacmal) )2 .

For delta’ RMSEMIN = \/((gy(model)(300) - gy(actual))/ gY(at‘tual) )2 + ((gA(modeI) (300) —gﬁ(aclual)) / gA(az'lual) )2 .
8) The relationship between gi(f) and gx() is that g, (#)=g,(t)(1+n)+nin discrete time as shown:
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I+gx () =(+g(t))(1+n) and gk (1) =g (t)+n+g,(1)-n holds in discrete time.
Using gx (1) =iy - A(t)-k(t)*",

1
g (t)= s (iK A k(1) ——n) is obtained as shown in Eq. 12.
n

Eq. 12 reduces to Eq. 13 when n = 0. Note that for recursive programming we cannot
initially use gx(?): only after calculating Ak(¢) in the previous period.
(3) The growth rate of output:

The values of the growth rate of per capita output over time are shown in recursive
programming. However, the following equation can be used for convenience:

8, (t)=ga(t)+o - g, (1) under any situation using y(t) = A(¢)k(r)”, where

y = y(A(,8),k(a)) (see Eq.11 and 12).

The related equations under CRC are separately discussed in the next section.
3. Specific equations under the optimum CRC situation

3.1 The CRC situation versus the optimum CRC” situation

The CRC situation, where the capital-output ratio becomes horizontal over time, is divided
into (1) numerous CRC situations and (2) the optimum CRC’ situation. The relationship
between parameters is only specified under the optimum CRC’ situation. What is the differ-
ence between CRC and CRC™? I define CRC as such condition that the capital-output ratio
higher than the initial/current capital-output ratio becomes horizontal over time. I define
CRC" as such condition that the capital-output ratio equal to the initial/current capital-output
ratio becomes horizontal over time, resulting in the highest rate of profit.

Numerous CRC situations are realized under the condition that the relative share of profit,
alpha, is equal to delta: alpha = delta. These situations cannot take into consideration the
relationship between beta", beta, delta’, and delta since Q(0) #Q". Note that under CRC’, the
hyperbolic curve of delta” to beta” exists as I will discuss in the next section.

The current situation is under either increasing or diminishing returns to capital (IRC or

~ K@+ K@) K+ K@)
_ L(r+1) L) _ (+n)L@) Lty K(a+D-(0+mK@) 1 )
(N () S 7 S e
L(t) L(1)
Note that the difference, n-g,(#), between g, (t)=g,(t)(1+n)+n and g,(t)=g(1)+n is very
trivial.
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DRC), where alpha # delta. My model approves the existence of DRC as in the literature,
where CRC is realized by offsetting/neutralizing DRC through total factor productivity
enhancement. However, for IRC I have a serious questiong): is IRC expressed under constant
returns to scale (under the Cobb-Douglas production function)? For this question, my intu-
ition is that (1) if I mildly define IRC as such condition that the rate of profit increases over
time, this mild IRC is expressed in my model and (2) if I strictly define IRC as such condition
that both beta” and delta” must satisfy each necessary condition, this strict IRC is not expressed
in my model. My model under CRC satisfies the first condition, where CRC is realized by
offsetting mild IRC by decreasing total factor productivity over time. My model under CRC,
however, does not satisfy the second condition of IRC, where both beta” and delta” lies within
a region surrounded by the hyperbolic curve and the vertical line of beta” under delta” = 0,
Bs-o(see Eq. 22). In short, a mild IRC exists under CRC. A strict IRC exists under CRC’,
but it is difficult to empirically identify this IRC even under CRC" since the model is under
CRS. I indicate that IRC in the literature is limited to the strict IRC under CRC". T will
discuss the strict IRC in the next section.

I will now discuss DRC and the mild IRC using the relationship between alpha and delta
under CRC. Note that there are numerous delta each corresponding with beta under CRC, but
we cannot determine delta using a certain calibrated beta under CRC.

Under CRC, a horizontal capital-output ratio over time will be confirmed by either
g,()=g.(t) or (1-)g,(t)=gs(t). However, g (¢) and g, (¢) cannot be measured under
the DRC situation. Thus, I have to use g,(¢)=i,-k(¢)*° for expressing the difference
between DRC and CRC. If k(f)ox — 8 = 1, g(¢) reduces to iy under CRC: g4(f) = ga(cre). A
constant value of iy, however, changes according to the change in beta.

1. If alpha > delta (or if mcrcy= alpha — delta > 0), k()*?> 1 and the rate of technological
progress increases over time, where g, (f)> gacrcy- Total factor productivity much

improves and leads to a mild IRC.'” 1t is relatively easier to neutralize the mild IRC and

9) Dr. Bryce Hool, head of the Department of economics and Dr. Debasis Bandyopadhyay, two
supervisors at the University of Auckland, stressed the balance between DRC and productivity
enhancement in Kamiryo [2003], where I used alpha and the critical alpha: (1) If alpha < the
critical alpha, the situation is DRC, if alpha = the critical alpha, the situation is CRC, and if
alpha > the critical alpha, the situation is IRC, using delta as a control parameter. The critical
alpha shows the limit of recursive programming.

10) The reason why I temporarily use “mild IRC” is that this classification does not take into consid-
eration the relationship between beta”, beta, delta”, and delta under CRC’ (see Eq. 25 as a final
solution).
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attain CRC. This situation, if it is set under CRC", corresponds with weak DRC.

2. 1If alpha = delta (or if mcgrcy= alpha — delta = 0), k(1)*? =1 and 84(t) = guaccrey- This
situation is, at the beginning of the current situation, already under CRC, where i, / k(2)*°
remains unchanged over time.

3. If alpha < delta (or if mcrey = alpha — delta < 0), k(t)*° <1 and the rate of technological
progress decreases over time, where g£a (t) < ga(crey. This is DRC in the literature:
negative total factor productivity aggravates DRC. We need a strong impact on delta” to
neutralize DRC. (15)
In short, the current situation shifts to CRC by neutralizing a mild IRC or DRC only by

adjusting delta. After formulating the specific equations under CRC’ below, I will finalize the

relationship between IRC, CRC", and DRC in 4.1.

3.2 Specific equations under CRC"

This section, starting with the growth rates arranged in Section 2, expresses various essen-
tial equations under the optimum CRC situation (CRC"). I call these equations as “a set of
specific equations” under CRC". 1 stress here that no literature has clarified the relationship
among parameters under the optimum CRC situation.

(1) The rate of technological progress under CRC’, ga:

ga(t) =i, -k(1)*° =i}, using a sufficient condition, alpha = delta. (16)

From Eq. 11 iy =(1—-7)-i and i =sgyy +60, -Ssuyy (if 6, =1, i =5), and beta’ is speci-
fied by the capital-output ratio, Q’, that equals the initial capital-output ratio.

(2) The growth rate of per capita output or capital under CRC, g; =g
Starting with g, () =g4(¢)+ - g,(?) (see Eq. 14) and using g, =i, and g, =g, .
. i

8y =8k = l—o

(17)

(3) The capital-output ratio under CRC", Q"

The capital-output ratio, Q", is now expressed by parameters and constitutes a key equa-
tion under CRC".

First, set “Eq. 17 equals Eq. 12,” where replace (1) A(¢)-k(z)®" by 1/Q",'" and (2) i} by

iy / k(0)% since a calibrated beta” has delta” # 0:

. 1 ix . ix
8k ( £ —HJ equals g« = A

1+l Q (- 0)k(0)”
1) AG) k()™ = k()™ k()™ 1Q (1) =1/Q(1).
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ok * o*
Thus, Q" = — = B -id-a)k(0) _. (18)
in(+m) (=B +m+n(l-0k(0)°

(1-a)k(0)*

Eq. 18 clarifies an essence of growth structure under both delta’ # 0 and delta = 0. In
particular, if beta” changes with other parameters the capital-output ratio changes with a differ-
ent vertical asymptote (also see Eq. 23 under delta’ = 0).
(4) The value of delta”:

Qi (1-B)1+n)
(1-o)B" i-Q -n)

Set m = k(0)*,'” and solve for 6" = LN(m)/ LN(k(0)). (20)
Q' (n(1-a)k(0)” +i (1+n))
i(1-a)k(0)” +Q" -i(1+n)
In Eq. 19, delta” is obtained only when both beta” and Q" are fixed. Also, I can change

From Eq. 18, k(0)”" = (19)

(2D

For confirmation, f;,, =

Bs.o without changing Q"=Q(0). In this case, the values of delta” are obtained along with the
changes in B;.,:8" (Bse)- 1call § (Bs.) “the hyperbolic curve of delta” to beta™ or
“the set of beta” and delta™ under CRC*. Eq. 21 expresses that beta’ and delta” are not
independent under CRC".

(5) The value of beta” with delta’ = 0: B;_,

Q" (nQ-a)+i (1+n))

By setting delta”= 0 in Eq. 21, B = - . 22

y setting delta’ = 0'in Eq. 21, foeo = = 0 0w m) 22

Or, using Eq. 18 or 22,

Q= Pl 020 23)
i(1- Boo)1+n)+n(l— )

And, finally, n= B t0=®)=Q -id=F) (24)

Q" (i1-BH+(1-))

Usually, B;,, is obtained by calibration and f;_, is measured using Eq. 22. The differ-
ence between the f3;,, under delta” # 0 and the B;_, under delta”= 0 is negligible. This
implies that 8;_, can be a substitute for B;,,. Furthermore, I set B;_, “the origin” of CRC".

12) In the set of specific equation under CRC*, I directly use “delta,” instead of using “alpha less
delta” for the rate of technological progress under CRC. I find consistency between “alpha less
delta” and “delta.” For “alpha less delta”, k(t)*’is used, where if o — § =0, k()*°=1. For
“delta” in the set of specific equations, i, /k(0)° is used, where if 6 = 0, k(0)°= 1. Therefore,
k(¢)*® =1 corresponds with k(0)’ =1. In both cases, the rate of technological progress com-
pletely similarly changes along with the change in beta or beta*.
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In short, both beta and delta under DRC are each independently calibrated using recursive
programming. Despite, beta” and delta” under CRC remain dependent as “the set of beta” and
delta’.” Specific equations in this section present essential relationships between parameters
under CRC". These relationships will make it possible to present some insight into the rate of
investment (to output; close to the rate of saving) and the growth rate of population/employed

' 1 will briefly clarify some of relationships among

persons, and the unemployment rate."”
parameters using simulation in Appendix. Note that my model in this paper satisfies both the
roles of the three financial parameters and eight propositions simulated in Kamiryo [2003],

where the specified equations are not formulated.

4. Convergence to CRC" and conditional convergence

4.1 Convergence from DRC to CRC”

In this section, I first show classification rules for the current situation, DRC, using the
hyperbolic curve of beta” to delta” (hereunder, the hyperbolic curve) and the vertical line of
Bs.,» and second show some results in the relationship between DRC and CRC’ using empiri-
cal data.

There are two kinds of convergence in the literature: by country and among
countries. An economy has its convergence from DRC to CRC". This is discussed by
country. Among countries, I intends to prove that conditional convergence exists when I use
the specific equations or the set of beta” and delta” under CRC".

For these two empirical convergences, I use the national accounts data of Japan 1983-95,
the US 1983-95, and the UK 1983-95, each on average, and the data of Japan by year from
1992 to 2000. These data use the OECD statistics and national accounts by country (for data
14)

arrangement, see Table 1).

First, I show the classification rules of the DRC situation. These rules are shown in

13) T intend to clarify the relationship between employed persons and unemployment using Eq. 24 in
a separate paper in the future.

14) For empirical study, Kamiryo models since 1998 use the data in national accounts and OECD
statistics by country to get six basic data: L, K, Sy, D, W, and S, where n is the growth rate of L,
profit IT is the sum of corporate saving S and dividends D, and output Y is the sum of II and
compensation W. Saving, S, equals net investment in capital since S is “net” after deducting
changes in inventories and depreciation, and adjusting the surplus of the nation (current external
balance) and capital transfers, receivables, and payables. These data are the same as those I used
at the University of Auckland and Kamiryo [2002/July].
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Table 1 Data, parameters, and variables by country and year

8 ,=0.8 and 6,=0.7 in each country for comaprison of y.

n a s i ix iy’ k(0) £22(0)
Japan 0.00809 0.09483 0.24860  0.20745 0.1733 0.0341 14.46 3.84
the US  0.02268  0.09691  0.09931 0.08575  0.0802  0.0055 86.12 2.78

the UK  0.00668 0.10094  0.10

8 Yaves8395s T aves3-9s

0.08754 0.0242  23.02 1.89

conv.speed  r(0)

Japan 0.0469  0.02473 0.02527 0.02473
the US 0.0632 0.03491 2.77 0.03500 0.9353 0.0288 0.03491
the UK 0.0741 0.05334 1.88 0.05381 0.7238 0.0336 0.05334

Japan n a s i i is k(0) Q(0)

1992 0.00803 0.05620 0.22819  0.18960 0.1582 0.0314 15.85 3.84
1993 0.00410 0.03770 0.19524  0.15983 0.1317 0.0282 16.30 395
1994 0.00042 0.05962 0.17468 0.14778 0.1191 0.0287 16.59 3.86
1995 0.00090 0.06710 0.16309 0.13996 0.1130 0.0269 16.86 3.83
1996 0.00818 0.09042 0.16676 0.14767 0.1251 0.0226 17.20 3.77
1997 0.00641 0.08966 0.15686 0.13978 0.1177 0.0221 17.74 3.83
1998 (0.00978) 0.08244 0.12771 0.11486 0.0851 0.0298 17.85 3.91
1999 (0.00598) 0.10094 0.11573 0.10904 0.0839 0.0251 17.96 3.88
2000 0.00073 0.09894 0.11663 0.10848 18.14 3.89
Japan  gyavessos ¥ avessos 4 Lkl o r(0)
1992 0.0118 0.01462 3.80 0.01478 . 0.01462
1993 0.0037 0.00954 3.93 0.00959 0.8238 0.00954
1994 0.0422 0.01544 3.85 0.01550 0.8059 0.01544
1995 0.0247 0.01750 3.79 0.01771 0.8076 0.01750
1996 0.0447 0.02396 3.76  0.02404 0.8470 0.02396
1997 0.0218 0.02339 3.81 0.02351 0.8420 0.02339
1998 (0.0223) 0.02110 3.80 0.02172 0.7406 0.02110
1999 0.0068  0.02601 3.84 0.02630 0.7694 0.02601
2000 0.0080 0.02542 3.91 0.02528 0.8180 0.02542

Figure 1 with notes. The current situation is under DRC, but DRC has three different catego-

ries in my model: (1) DRC itself found in the literature and (2) two kinds of weak DRC (half-

DRC and half-IRC; determined by the differences between “beta and B;_,” and between “delta

and delta™). In Eq. 15, I showed three situations, mild IRC, CRC, and DRC, using mcgc) =

alpha—delta > 0, m(crc)= alpha—delta = 0, and mcgc,= alpha—delta < 0. This classification
temporarily holds for numerous CRC situations without introducing the relationship between
beta, ﬁ;=0’ delta, and delta”. When my model takes into consideration the relationship
between beta” and delta”, Figure 1 is shown, using Eq. 20, m=k(0)*: m>1,m=1,and m <

1, which respectively correspond with the above three cases of mxc):

1. If m=k(0)*> 1 (or delta”> 0), total factor productivity already increases over time under
DRC. The optimum CRC’ situation is attained by neutralizing this half-DRC (or half-
IRC). I call this weak DRC. This weak DRC is divided into two categories: (1) beta >
Bs=o and delta < delta’, which I call Region 2 under weak DRC and (2) beta < f3;_, and
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Figure 1 Classification rules for transitional paths: from DRC to CRC

Region 4 delta
weak DRC

Region 1
DRC

Region 3
IRC

Region 1
A DRC

Notes: Explanation of classification rules

Region 1  Region 2  Region 3  Region 4
minus plus plus minus
minus minus plus plus

1: sDRC 4: sDRC
1: wDRC  2: wDRC 4: wDRC

k(0N S*<1
K0y 5%>1

1. k(0)*8*<1 shows that the current DRC situation is strong.
So that, “strong” can be added to the front of DRC: sDRC.
2. k(0)*6*>1 shows that the current DRC situation is weak.
So that, “weak” is added to the front of DRC: weak DRC.
3. The current situation cannot identify IRC due to CRS.
4. k(0)*6* works for attaining CRC by balancing productivity enhancement and DRC.

delta > delta’, which I call Region 4 under weak DRC.

If m= k(O)‘S* =1 (or delta” = 0), total factor productivity does not change over time under
DRC’. This leads to the optimum CRC situation, where beta” equals f;_,.

If m=k(0)* <1 (or delta” < 0), total factor productivity decreases over time under DRC.
This situation corresponds with DRC in the literature (see Inada [1963]). The optimum
CRC” situation is attained by neutralizing this conventional DRC through productivity
enhancement. [ call this DRC. This category occupies Region 1. Note that in rare
cases Region 1 includes the case of m=k(0)*" > 1 (or delta”> 0). This happens when
DRC occurs at a point close to Region 2, which I also call weak DRC. (25)

Using the above classification rules, the hyperbolic curve (of delta” to beta’) takes beta” on

the X axis and delta” on the Y axis in Figure 1. Along with this curve, I pay attention to three

beta” values: (1) delta”= 0 (which satisfies ﬂ;zo), (2) delta” # 0 (which is close to zero and sat-

isfies fB;_,), and (3) delta =alpha just for information. The origin is shown by fB;_,. Figure

1, at the same time, shows the current DRC situation by replacing beta” with beta and delta”
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with delta, where the point of intersection of beta and delta indicates the current situation of

DRC.

The transition paths from DRC to CRC" are shown by the arrow from this intersection to

the origin. The difference/distance between f3;_, and beta and the distance between delta’= 0

and delta are most important in terms of convergence. These distances are definitely related

to the speed of convergence, which is in turn related to the level of the capital-output ratio un-
der CRC". In this sense, a condition of delta” = alpha is irrelevant of convergence by country.
Figure 1 distinguishes Regions 1, 2, and 4 under DRC and Region 3 under IRC. Region

3 is surrounded by the hyperbolic curve and the vertical line of f;_,. Regions 2 and 4 show

weak DRC since either beta” or delta” is half-DRC (getting rid of Region 1 or conventional

DRC). The transitional paths are limited: from Regions 1, 2, or 4 to the origin. Under CRS,

the path from Region 3 to the origin is not possible.

Turning to the second issue, Figure 2 and Table 2 show some results in the relationship
between DRC and CRC” using empirical data.

1. The vertical line through the origin differs by country: the UK is lowest and the US the
highest. The difference between beta and f;_, is largest in the UK and smallest in the
US. Japan is between the UK and the US.

2. The hyperbolic curve significantly differs by country: the US is highest and most sharp,
while the UK and Japan are similar and mild. This difference comes mainly from the dif-

) This result is consistent with that of

ference of the growth rate of population/workers."
MRW [1992. p. 433] (see Appendix).'®

3. For Japan in the 1900s, the vertical line is lowered to some extent. Also, the character of
current situation of DRC changes: from a high positive delta to a low positive delta and

sometimes from a high beta to an extremely high beta (as in 1998).

15) The Kamiryo model uses employed persons for data, but the relationships among population (as
in OECD data), employees, and employed persons (= employees + employers) are expressed by
equations using the rate of unemployment. Thus, the differences can be absorbed in any
model. In this paper, I use, for simplicity, an expression of population.

16) Mankiw, Romer, and Weil [1992, p. 433] state as follows: “population growth also has a larger
impact on income per capita than the textbook model indicates. In the textbook model higher
population growth lowers income because the available capital must be spread more thinly over
the population of workers. In the augmented model human capital also must be spread more
thinly, implying that higher population growth lowers measured total factor productivity.” In
this paper, I formulated Eq. 24 and showed Appendix SF 3 to clarify n(8 )or B’(n), where the
growth rate per capita output is (1 — f*)s/(1 — &) with no banking costs.
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Figure 2 The curve of delta’ to beta” under CRC and the current situation by country and year

The curve under CRC" and the current situation by country
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Table 2 Decision-making parameters under the current and CRC” situations by country

" " Region &

delta Sat beta Bis=o m=k(0)° Sp—6 Biso—P level
Japan 0.00623 0.00919 0.93242 0.83867 1.0249 0.003 -0.0938  2:wDRC
the US | -0.06288  0.00274 0.9359 1.0123 0.0656  -0.0119 2:wDRC
the UK [ -0.01577 0.00309 0.87067 0.72565 1.0097 0.0189 -0.145 2:wDRC

Japan1992 0.23312 0.01084 0.98054 0.83597 1.0304 -0.2223 -0.1446 1:DRC

1993 0.00195 0.8246 1.0055 —15.468 -0.1626 1:DRC
1994 | -0.00687 0.00106 0.87699 0.80638 1.003 0.0079 -0.0706  2:wDRC
1995 0.00723 0.00387 0.90213 0.80925 1.011 -0.0034 -0.0929 1:DRC

1996 | -0.00886 0.00122 0.91686 0.84739 1.0035 0.0101 -0.0695  2:wDRC
1997 0.04047 0.00181 0.93481 0.84262 1.0052 -0.0387 -0.0922 1:DRC
1998 0.14978 0.00652 1.18174 0.74455 1.019 —-0.1433 -0.4372 1:DRC
1999 0.03125 0.00261 0.93737 0.77078 1.0076 -0.0286 -0.1666 1:DRC
2000 0.0726  -0.00236 0.94988 0.81703 -0.075 -0.1328 1:sDRC

4. As shown in Table 2, the current situation is weak DRC except for Japan 2000. For
Japan in the 1990s, Region 2 disappears after 1996, where both beta and delta and also the
difference between DRC and CRC have not improved.'”

It is anticipated that the Japanese economy cannot recover without strong government
leadership for decreasing beta and delta through structural reform and deregulation. If Japan
cannot get rid of Region 1, Japan must eventually be defeated in international competition.
Note that the Japanese economy is beta-oriented (structural reform/deregulation-oriented) more

than delta-oriented (R & D/education-oriented).

4.2 Conditional convergence among countries

I tested convergence across countries under the optimum CRC situation, using the same
data in the previous section together with additional data from China, Korea, and
Taiwan. Tables 3-1 to 3-3 show the results of convergence.

For convergence-simulation, I arranged the following eight cases using four related
parameters, n, alpha, s, and beta’, which are essential as shown in Eq. 18:
Case 1.1 Data before simulation.
Case 1.2 Setn =0, s=0.1, and beta" = 0.8, but alpha remain unchanged: convergence.

Case 1.3 Setn=0.02, s = 0.1, and beta” = 0.8, but alpha remain unchanged: convergence.

17) According to my divisional analysis, a fundamental reason is that bera in the government and
household sector is 1.4. This implies that the rate of technological progress in this section is
minus 5%, which results in deflation.
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Table 3-1 Convergence-simulation of beta’, n, s, and alpha: Cases 1.1 to 1.4
using #,=0.8 and 6,=0.7, where if 8,=1, i=s.

Root Mean Square Mean ( RMSE)

Casai 1 Before simulation (SIMU.) under the optimum CRC situation by country
1=1000 @ e Br “Bk 84 & =& 2=h n s
J 1996 0.0904 0.0331 0.0226 0.0249 3.7607 0.0240 0.0082 0.1668
J 1998 0.0824 0.0227 0.0298 0.0325 3.7960 0.0217  (0.0098) 0.1277
J 2000 0.0989 0.0227 0.0197 0.0219 3.9136 0.0253 0.0007 0.1166
J 83-95ave. 0.0948 0.0459 0.0341 0.0378 3.7531 0.0253 0.0081 0.2486
US 83-95ave.  0.0969 0.0288 0.0055 0.0061 2.7690 0.0350 0.0227 0.0993
UK 83-95ave.  0.1009 0.0336 0.0242 0.0269 1.8758 0.0538 0.0067 0.1003
China 97 0.0981 0.0886 0.0706 0.0785 1.8539 0.0529 0.0101 0.2807
Taiwan98 0.0768 0.0684 0.0551 0.0598 2.7456 0.0280 0.0086 0.2861
(0.0853) | 0.0596 0.0556 0.0511 3.9344 | (0.0217)  0.0085 0.3907
¢ 1.2 SIMU. n=0, 5s=0.1,beta=0.8, but a remains unchanged: convergence relative difficulty
+=1000 a beta" gy =gy g4’ o=k'y' r'  cov.speed  ForrMse-o
J 1996 0.0904 0.8 0.0207 0.0189 3.6349 0.0249 305 (0.498)
J 1998 0.0824 0.8 0.0202 0.0185 0.0202 3.6672 0.0225 262 (1.840)
J 2000 0.0989 0.8 0.0211 0.0190 0.0211 3.6005 0.0275 280 1.714
J 83-95ave. 0.0948 0.8 0.0196 0.0177 0.0196 3.6173 0.0262 278 (0.522)
US 83-95ave.  0.0969 0.8 0.0191 0.0173 0.0191 3.6090 0.0269 291 (0.927)
UK 83-95ave.  0.1009 0.8 0.0194 0.0175 0.0194 3.5927 0.0281 282 (1.209)
China 97 0.0981 0.8 0.0204 0.0184 0.0204 3.6039 0.0272 392 (1.329)
Taiwan98 0.0768 0.8 0.0207 0.0191 0.0207 3.6899 0.0208 228 0.619
Korea ~ (0.0853) 0.8 0.0182 0.0198 0.0182 4.3446 | (0.0196) 691 1.135
(3 se | IMU. n=0.02, s=0.1, beta=0.8, but & remains unchanged: convergence relative difficulty
1=1000 a beta” g = oyt P cov. speed  For RMSE=0:
J 1996 0.0904 0.8 . 0.0189 0.0207 1.8321 0.0494 143 rela.diffi.
J 1998 0.0824 0.8 0.0402 0.0185 0.0202 1.8253 0.0452 177 (1.660)
J 2000 0.0989 0.8 0.0411 0.0190 0.0211 1.8316 0.0540 129 5.249
J 83-95ave. 0.0948 0.8 0.0396 0.0177 0.0196 1.7723 0.0535 193 1.008
US 83-95ave.  0.0969 0.8 0.0391 0.0173 0.0191 1.7473 0.0555 128 0.209
UK 83-95ave.  0.1009 0.8 0.0394 0.0175 0.0194 1.7536 0.0576 179 (0.388)
China 97 0.0981 0.8 0.0404 0.0184 0.0204 1.8005 0.0545 141 (0.662)
Taiwan98 0.0768 0.8 0.0407 0.0191 0.0207 1.8567  0.0414 116 0.479
Korea 98 (0.0853) 0.8 0.0309 0.0118 0.0109 1.5197  (0.0561) 165 3.872
& jJummary: using the capital-output ratio (cf. Table 4 that uses gy')
J 1996 J 1998 J 2000 J83-95 US83-95 UKB83-95 China 97 Taiwan98 Korea 98
3.635 3.667 3.601 3.617 3.609 3.593 3.604 3.690 4.345
Bef. SIMU 3.761 3.796 3914 3.753 2.769 1.876 1.854 2.746 3.934
difference 0.126 0.129 0.313 0.136 (0.840)  (1.717)  (1.750) (0.944) (0.410)
1.7:n &s 4.954 2.657 4.047 4.592 13.012 2.353 2.116 3.166 4615
1.2:4 3.635 3.667 3.601 3.617 3.609 3.593 3.604 3.690 4.345
difference 1.319 (1.010) 0.447 0.974 9.403 (1.239)  (1.488)  (0.524) 0.270
1.5: beta 5.145 5.964 3.492 3.051 1.629 2.663 2.992 3.150 3.728
0 3.635 3.667 3.601 3.617 3.609 3.593 3.604 3.690 4.345
difference 1.510 2.297 (0.109)  (0.566)  (1.980)  (0.930) (0.612) (0.539)  (0.616)
Notes:

1. For the initial data including the three actual growth rates, see Supplementary data 5 to 10.

For Korea, I directly use the data of the Bank of Korea, but with economic difficulties.
2. The speed of convergence is measured by the number of times when 2" becomes horizontal.
3. It is almost impossible in simulation to have the Root Mean Square Error (RMSE) equal zero.

The relative difficulty for attaining onvergence is measured by the value of RMSE in calibration.
4. Even if the capital-output ratio is the same, the speed of convergence differs by relative difficulty.
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Table 3-2 Convergence-simulation of beta’, n, s, and alpha: Cases 1-5 to 1-8

using 6,=0.8 and &,=0.7, where if 8, =1, i=s.

Root Mean Square Mean ( RMSE)

IMU. beta=0.8, but &, n, and s remain unchanged: no convergence relative difficulty

1=1000 a beta” g4 ' Q" =k W r' cov.speed  For RMSE=0:

J 1996 0.0904 0.8 0.0246 0.0313 0.0344 5.1452 0.0176 194 (0.715)

J 1998 0.0824 0.8 0.0163 0.0239 0.0260 5.9642 0.0138 277 (2.070)
J 2000 0.0989 0.8 0.0248 0.0217 0.0241 3.4917 0.0283 207 2.207
J 83-95ave. 0.0948 0.8 0.0540 0.0415 0.0459 3.0509 0.0311 81 0.409
US 83-95ave.  0.0969 0.8 0.0417 0.0171 0.0190 1.6287 0.0595 143 0.365

UK 83-95ave.  0.1009 0.8 0.0262 0.0175 0.0195 2.6630 0.0379 176 (0.936)

China 97 0.0981 0.8 0.0627 0.0473 0.0525 2.9924 0.0328 98 (0.918)
Taiwan98 0.0768 0.8 0.0616 0.0488 0.0530 3.1504 0.0244 95 0.073
Korea 98 (0.0853) 0.8 0.0621 0.0583 0.0536 3.7283  (0.0229) 83 1.824
| IMU. n=0, s=0.1, «=0.1, but beta changes: gence relative difficulty

a beta” g4 =k"py" r cov.speed  For RMsE=o:

0.9500 0.0059 0.0053 0.0058 15.6102 0.0064 691 (1.592)

0.9700 0.0037 0.0033 0.0038 24.6569 0.0041 913 (1.944)

0.9300 0.0075 0.0068 0.0075 11.8107 0.0085 685 (0.701)

J 83-95ave. 0.9250 0.0079 0.0071 0.0078 10.5098 0.0095 522 (1.448)

US 83-95ave. 0.9030 0.0098 0.0088 0.0097 8.0166 0.0125 485 (1.490)

UK 83-95ave. 0.8380 0.0154 0.0139 0.0154 4.7334 0.0211 419 (1.382)
China 97 0.8700 0.0137 0.0123 0.0136 5.8715 0.0170 398 (1.581)
Taiwan98 0.9560  0.0054 0.0048 0.0053 18.0519 0.0055 682 1.548
Korea 98 | 0.9800 0.0028 0.0026 0.0027 37.2539 0.0027 836 1.730
; n=0, s=0.1, but i no convergence relative difficulty
a beta” - g4 ) 2°=k'p" r cov.speed  For RMSE=0:

0.0904 0.8450 0.0161 0.0146 0.0161 4.9536 0.0183 382 (0.876)

0.0824 0.7435 0.0259 0.0238 0.0259 2.6570 0.0310 204 (1.691)
0.0989 0.8180 0.0192 0.0173 0.0192 4.0472 0.0244 334 1.358

J 83-95ave. 0.0948 0.8354 0.0161 0.0146 0.0161 4.5917 0.0207 336 (0.819)
US 83-95ave.  0.0969 0.9353 0.0062 0.0056 0.0062 | 13.0118 0.0074 830 (1.651)
UK 83-95ave.  0.1009 0.7238 0.0269 0.0241 0.0269 2.3534 0.0429 164 (0.833)
China 97 0.0981 0.7015 0.0304 0.0274 0.0304 2.1162 0.0464 204 (0.889)
Taiwan98 0.0768 0.7744  0.0233 0.0215 0.0233 3.1658 0.0243 271 0.524
Korea 98 (0.0853)  0.8095 0.0104 0.0113 0.0104 4.6147 | (0.0185) 461 1.141
IMU. a=0.1, n=0.02, s=0.1, and beta=0.8: no convergence relative difficulty

£=1000 o beta” gr “8x 84 ) by TR 2=k r’ cov.speed  For RMSE=0:
J 1996 0.8 0.0473 0.0245 0.0271 1.6065 0.0622 IRC: 224# 1.106
J 1998 0.8 0.0553 0.0317 0.0349 1.3733 0.0728 IRC: 243# -1.698
J 2000 0.8 0.0417 0.0195 0.0217 1.8090 0.0553 189 5.289
J 83-95ave. 0.8 0.0223 0.0201 0.0222  3.20431 0.0312 IRC: 196# -0.451
US 83-95ave 0.8 0.0407 0.0186 0.0207 1.6843 0.0594 236 0.243
UK 83-95ave. 0.8 0.0390 0.0171 0.0190 1.7715 0.0565 229 -0.395
China 97 0.8 0.0783 0.0523 0.0582 2.3838 0.0419 174# -0.714
Taiwan98 0.8 0.0583 0.0345 0.0377 1.3671 0.0731 240# 0.474
Korea 98 0.8 #NUM! #NUM! #NUM! #NUM! #NUM! no conv. 2.725

Notes:

1. See Notes in Supplementary material 1 (1). Mark, #, in Case 1.8 indicates that £2” cannot be horizontal.

2. Supplementary data 1 (1) shows convergence and 1 (2), shows no convergnece.

3. Population growth, n, influences the capital-output ratio and, accordingly, the speed of convergence.
4. Case 1.8 never converges since the use of all four parameters makes this impossible.
See Eq. 22 for clarification of the relationship among parameters under the optimum CRC situation.
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Table 3-3 A summary of simulation: to test conditional convergence

Using the difference of the growth rate of per capita output between two cases
US 83- UK 83- China  Taiwan Korea

J1996  J1998  J2000 J 83-95 95 95 97 98 98
: 1 0021 0020 0021 002 0019 0019 0020 0021 0011
Bef. SIMU 0.025 0033 0022 0038 0006 0027 0079 0060  0.051
difference 0.004 0012 0001 0018 (0.013) 0007 0058  0.039  0.040
1.7:n & s 0016 0026 0019 0016 0006 0027 0030 0023 0017
12&13 0021 0020 0021 0020 0019 0019 0020 0021 0011

difference (0.005) 0.006 (0.002) (0.003) (0.013) 0.007 0.010 0.003 0.006

0034 0026 0024 0046 0019 0019 0053 0053  0.054
s 0021 0020 0021 0020 0019 0019 0020 0021 0011
difference 0014 0006 0003 0026 (0.000) 0000 0032 0032 0043

Note: The difference between 1.2 and 1.3 is 2% as population growth, which I excluded. I used the same data
as Kamiryo [2002/NIRA].

Case 1.4 Summary of convergence: using the growth rate of per capita output.

Case 1.5 Set beta” = 0.8, but alpha, n, and s remain unchanged: no convergence.

Case 1.6 Setn =0, s=0.1, and alpha = 0.1, but beta” changes: no convergence.

Case 1.7 Setn =0, s =0.1, but alpha and beta” remain unchanged: no convergence.

Case 1.8 Set alpha =0.1, n=0.02, s = 0.1, and beta” = 0.8: with no convergence.

I find in simulation that (1) convergence occurs when three of four parameters are the
same (see Table 3-1) and (2) convergence does not occur when one/two of four parameters are
the same or when all four parameters are the same (see Table 3-2). The value of beta” signifi-
cantly influences convergence, yet beta” alone is not enough for insuring convergence. If the
four parameters are used for simulation, there is no room for calibration to satisfy the OLS
method (RMSE = 0), owing to the tight relationship among the four parameters as shown in
Eq. 18.

For convergence that uses three parameters (except for alpha), 1 present the following
interesting findings (see Cases 1.2 and 1.3):

1. For nine cases (Japan 96, 98, and 2000; Japan, the US, and the UK each in 1983-95 on
average; China, Taiwan, and Korea in 1997 to 98), each capital-output ratio becomes
significantly similar (except for Korea).

2. The speed of convergence (in Tables 3-1 and 3-2) is accordingly similar, yet with some
differences, due to the relative difficulty in getting the RMSE — 0 (except for Korea).

3. The relative difficulty varies widely across countries due to different combinations of the
initial parameters. The use of three parameters out of four makes it impossible to get the

RMSE close to zero.
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4. Population growth significantly influences the results: (1) if n = 0, Q"= 3.6 and the speed
of convergence is roughly 280 and (2) if n = 0.02, Q"= 1.8 and the speed of convergence is
roughly 140 (one-half of 280).

5. The results of convergence are shown in Table 3-3 (see Cases 1.2 and 1.3) using the
growth rate of per capita output, g; .

In short, I proved the existence of conditional convergence across countries by using
simulation. However, I must distinguish the existence of conditional convergence with the
possibility of its realization. Conditional convergence only holds under an assumption that n,
s, and beta” are the same across countries. In the real world, it is difficult to satisfy this
assumption and thus, it is not possible for many countries to realize conditional convergence.'?

What is most important for each country to approach the same conditional convergence?
Suggested answer to this is: to decrease each country’ beta/delta to attain beta /delta” as a com-

mon target by structural reform and deregulation.

5. Conclusions

My endogenous growth model uses the Cobb-Douglas production function starting with
Solow [1956] under constant returns to scale (CRS). I do not introduce human capital (stock)
into my model and, instead, I introduce investment in quality for the rate of technological
progress and capital (stock) in quality for the level of technology. For this, I introduce the
function of the corporate, financial and government sectors and, accordingly, related decision-
making parameters in my model. These decision-making parameters are beta and delta.
These distinguish investment in quality from investment in quantity and clarify each accumula-
tion as the level of technology and physical capital.

The idea of this model comes from Kamiryo [2003] that uses the three financial param-
eters (a financial intermediary parameter, 8,, a corporate decision-making parameter, 6,, and a

parameter capturing barriers to technology growth, y) together with a control parameter, delta.

18) Jones [1998, p. 62: Note 9] explains “conditional convergence” as follows: conditional conver-
gence reflects the convergence of countries after we control for (“condition on”) differences in
steady states. It is important to keep in mind what this “conditional convergence” result
means. It is simply a confirmation of a result predicted by the neoclassical growth model: that
countries with similar steady states will exhibit convergence. It does not mean that all countries
in the world converging to the same steady state, only they are converging to their own steady
states according to a common theoretical model. I leave a message here: my model has clarified
the conditions for conditional convergence.
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This model, based on the same financial and corporate function, replaced the three
financial parameters by betra and also replaced delta as a control parameter with delta as a
decision-making parameter.

By so doing, I finally completed, in this model, equations related to endogenous economic
growth (Egs. 1 to 17) and formulated the set of specific equations under the optimum CRC”
situation. The optimum CRC" situation that attains the highest rate of profit differs from
numerous CRC situations, where the capital-output ratio converges to a certain value higher
than the initial/current value. Under CRC”, delta” is a function of beta” and expressed as the
hyperbolic curve of delta” to beta’, which makes it possible to strictly clarify the difference
between IRC, CRC”, and DRC.

My model thus sets the classification rules (see Figure 1) for the current situations, DRC
and weak DRC, by fixing the category of CRC", after temporarily setting the difference
between the current situations under CRC. The current situation of DRC is now expressed
using the differences both between beta and beta” and between delta and delta” (see Figure
2). I found a new category of weak DRC in Regions 2 and 4, where either beta or delta is
below either the hyperbolic curve or the vertical line of B;_,. Why did I find this new cat-
egory in DRC? This is because I found two kinds of m =k(0)*" under DRC (see Eq. 25),
where if m > 1(or delta” > 0), this situation enhances productivity over time even under DRC
and if m < 1(or delta” < 0), this situation diminishes productivity over time as seen in conven-
tional DRC. Both cases converge to CRC" by offsetting enhancing or diminishing productiv-
ity over time and DRC. Thus, to attain CRC, the former is weak DRC and the latter is strong
DRC or conventional DRC (in Region 1).

IRC exists in Region 3. I strictly define IRC as the situation, where both beta and delta
are below the hyperbolic curve and the vertical line of S;_,. However, I cannot identify IRC
due to CRS and thus, the arrow path from IRC to CRC” cannot be indicated. Empirically, the
Japanese economy in the 1990s has lost the power to make Region | turn to Region 2 or 4
due to an extremely high level of beta’ (particularly due to public excessive investment in
quantity).

The set of specific equations under CRC” (Eqs. 18 to 24) is unique in that these equations
can clarify the relationship between parameters and variables: in particular, n(beta’), Q(
beta"), and Q'(n), based on Eq.24 (see Appendix). These equations also clarify essential con-
ditions for conditional convergence among countries: I find that the growth rate of per capita

output among countries is very close to 2% if n = 0, s = 0.1, and beta” = 0.8, but alpha remains
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unchanged among countries (see Case 1.2), where, I indicate, structural reform and deregula-
tion parameter, beta, significantly influences on economic growth and also the inclination

between beta” and delta” significantly differs by country.

Appendix The specific equations under the optimum CRC” situation:
similarities and differences compared with the literature

This section clarifies the characteristics of the specific equations, in particular Eqgs. 23 and
24, using supplementary tables and figures (ST 2 and 3 and SF 2 and 3 at the end).
1. Q"(Bs): Q" is a hyperbolic function of Bs-o: The curvature of this function depends on
the values of the set of combinations of n, alpha, and i. In particular when B;_, becomes
higher than 0.9, Q" becomes rapidly higher.
2. iy(Bss): Needless to say, i} is a negative linear function of B;_,: iy =(1—B")-i, where
if Bso=1,i4=0. Since g, =i, /(1-a), g, is a negative linear function of B; . There-
fore iy is a negative function of Q": i} (Q").
3. B;., is a positive linear function of n: B5(n). The higher n, higher B;_, (and accord-
ingly, lower i). Although n does not usually change, the level of n determines Bs-, and ac-
cordingly, iy. This is a striking fact, especially when compared with what Mankiw, Romer,
and Weil (MRW) [1992] and Groth and Schou [2002] indicate: that there is a significant influ-
ence of population growth on per capita output.
4. (1) g, is a negative linear function of Bs-o> (2) Bs, is a positive linear function of n, and
(3) the growth rate of output, gy, is a slightly positive linear function of B, , (see SF 2).
These linear results show a more definite finding than MRW [1992] that stresses a negative
relationship between n and g, (compare with SF 3).
5. The rate of saving/investment, s or i, where s = i under no banking costs, has a vertical
asymptote to 85, at s = 0 or i = 0 (as shown in empirical results). The existence of the ver-
tical asymptote found in fB;_,(s) is another striking fact: if s = 0, there exists a trap of eco-
nomic growth, where no convergence/CRC is expected. When the payout ratio is extremely
high together with wages fully consumed, an economy may have a possibility to fall into this
trap.
6. On the contrary, the relative share of profit, alpha, is irrelevant to ;.. Alpha, together
with s, only determines the difference between g; and r (see below).

7. Finally, using Q" (S5, ), I prove that the initial capital-output maintains a basis for profit-
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maximizing. This is because r* = ¢/ Q", where the lower Q" the higher the rate of profit, r’,
and Q" (based on [3;:0) cannot be lower than Q(0) under given parameters.
Next, definite differences between beta’ = 1 (with no technological progress) and beta < 1
(with technological progress) are summarized in comparisons with the literature as follows:
1. If B;,=1, n=5s/Q", where s=i=iy and n=gy: Harrod [1973, pp. 16-31].
B-a) _ix(l-a) _
g g

situation. This proves that g, =s/Q" holds under B;, >1 and modifies Harrod’s

2. Ifn=0,Q = where Q" =Q(0) under the optimum CRC

[1973, pp. 16-31], where no knife’s edge exists when beta” changes.

3. f“s=a” n=s/Q" =gy becomes equal to o/ Q" =r" =gy under Bs-o= 1, and also
g, =5s/Q =a/Q" =r" under B;, > 1. O’Connell [1995] reviewed the case of fB;_,
=1. [Ifind its generalization under B;_, > 1: If o > ix,r > g;, if a=ig,r' = g;, and if
o<ig,r < g;. A situation of s = o implies that dividends are equal to saved wages, as
Robinson [1957] indicated.

4. If Bso >1, g, =ix / Q" (see the above 3): This form is similar to MRW’s [1992, p. 433]
MPK =o(n+g)/s,: under an assumption of a constant exogenous technological
progress, the sum of the fraction of income invested in physical capital and the fraction
invested in human capital, s = sy + s;, holds in Y ()= K(t)* - H(t)? -(A(t)- L(2))"™".
Kamiryo’s model newly finds: If iy >n-Q g, >0, if ix=n-Q) g, =0, and if
ix <n-Q; g, <0, each under an endogenous growth situation. This finding between
population growth and quantitative investment implies that an economy should not be
closed but open to the world.

The above results are unique in that no literature shows the relationship among parameters
under the optimum CRC” situation: some of these results are consistent and others significantly

differ. These results are almost consistent with the results simulated in Kamiryo [2003].
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ST1 Aggregated amounts and ratios by country and year

(1) Aggregated amounts between 1983 and 1995 by country (in detail, see Supplementary data 7,

L) K@) S 1(0) D) 17(0) W) () S©)
Japan 83-95 826462 11949490 133533 161924 295457 2820218 3115675 774566
US 83-95 1451243 124974600 1417015 2945243 4362258 40649600 45011858 4470268
UK 83-95 331474 7629000 147227 259695 406922 3624390 4031312 404307
(2) Ratios on average

n a £2(0) r0) k(0) ¥(0) s S
Japan 83-95 0.00809  0.09483 3.83528 0.02473  14.45861 3.76989 0.24860 0.45195
US 83-95 0.02268  0.09691 2.77648 0.03491 86.11556 31.01607 0.09931 0.32484

UK 83-95 0.00668  0.10094 1.89244 0.05334  23.01538 12.16177 0.10029 0.36181
(2) Ratios on average (continued)

g’y gk gy beta 0, ) Y Ssmy
Japan 83-95 0.04690 0.06164 0.03881 0.93592 0.80000 0.70000 0.87407 0.04286
US 83-95 0.06316 0.04897 0.04048 0.92023 0.80000 0.70000 1.07180 0.03148
UK 83-95 0.07407 0.08808 0.06739 0.85222 0.80000 0.70000 0.74091 0.03652

SNA Japan from 1992 to 2000

(1) Agri. Amov  L(0) K(0) Sn(0) D) 117(0) w() Y(0) S(0)

Japan 1992 66368 1052215 9655 5733 15388 258438 273827 62483
Japan 1993 66640 1086129 4994 5368 10362 264484 274846 53661
Japan 1994 66668 1106055 11516 5560 17076 269355 286431 50033
Japan 1995 66728 1125221 13913 5782 19695 273809 293504 47869
Japan 1996 67274 1157092 21870 5854 27724 278897 306621 51131
Japan 1997 67705 1200789 22390 5701 28091 285198 313290 49143
Japan 1998 67043 1196896 19441 5809 25250 281040 306290 39115
Japan 1999 666422 1196858 25375 5750 31125 277233 308358 35687
Japan 2000 66691 1209717 23585 7168 30753 280080 310833 36253
(2)Ratios n a £2(0) r(0) k(0) y(0) s sn

Japan 1992 0.00803 0.05620 3.84263 0.01462  15.85425 4.12589 0.22818 0.62742
Japan 1993 0.00410 0.03770 3.95177 0.00954  16.29845 4.12435 0.19524 0.48195
Japan 1994 0.00042 0.05962 3.86150 0.01544  16.59049 4.29638 0.17468 0.67441
Japan 1995 0.00090 0.06710 3.83375 0.01750  16.86280 4.39852 0.16310 0.70641
Japan 1996 0.00818 0.09042 3.77369 0.02396  17.19969 4.55779 0.16676 0.78884
Japan 1997 0.00641 0.08967 3.83284 0.02339  17.73560 4.62728 0.15686 0.79704 -
Japan 1998 -0.00978 0.08244 3.90772 0.02110  17.85266 4.56856 0.12771 0.76993
Japan 1999 -0.00598 0.10094 3.88139 0.02601  17.95946 4.62707 0.11573 0.81526
Japan 2000 0.00073 0.09894 3.89186 0.02542  18.13913 4.66079  0.11663 0.76692

(2) Ratios (con g “ y g« g’ beta 6, 6, 7 Ssmy
Japan 1992 0.01181 0.04820 0.00374 0.98054 0.80000 0.70000 0.86213 0.03526
Japan 1993 0.00372 0.03223 -0.00037 0.98717 0.80000 0.70000 0.83972 0.01817
Japan 1994 0.04215 0.01835 0.04171 0.87699 0.80000 0.70000 0.84549 0.04021
Japan 1995 0.02469 0.01733 0.02377 0.90213 0.80000 0.70000 0.86266 0.04740
Japan 1996 0.04469 0.02832 0.03621 0.91686 0.80000 0.70000 0.98425 0.07133
Japan 1997 0.02175 0.03776 0.01525 0.93481 0.80000 0.70000 0.99047 0.07147
Japan 1998 -0.02234  -0.00324  -0.01269 1.18174 0.80000 0.70000 0.79085 0.06347
Japan 1999 0.00675  -0.00003 0.01281 0.93737 0.80000 0.70000 1.37036 0.08229
Japan 2000 0.00803 0.01074 0.00729 0.94988 0.80000 0.70000 1.09276 0.07588
Note:

1. An amount is shown by BN YEN for Japan, MN USS$ for the US, and MN PS for the UK (as in Kamiryo, 2002/NIRA).

2. Each amount is principally based on the data of OECD (Main Aggregates of National Accounts).
3. For the Japanese data, I use Annual Report on National Accounts, ESRI, Cabinet Office, by year.
4. For the number of labour, I principally use employed persons, instead of population or employees.
5. I assume that net saving equals net capital investment, but statiscally, this assumption does not hold:
Thus, I adjust indirectly the increase in net capital formation (4 K : net investment) by adjusting saving-side data:

Basically, net capital formation=net saving after capital formation - incease in inventories - (exports, E x - imports, /).

And, current external balance (E y-/,,) = the differences of saving and net investment in private and public sectors.
Instead of using Ex-Ip, I use the rest of the world as the sum of E -/, and the net capital transfers etc., r. & p

6. Saving in 2000 for Japan (italic) was just adjusted by taking into consideration the statsitical discrepancies.

7. For brevity in this paper, I assume that banking costs parameter, &, is 0.8 and manager's parameter, 8, is 0.7.

8, and 9)

Su(0)
641033

3053253
257080

SH
0.21496
0.07004
0.06619

S sHry

0.20574
0.06783
0.06377

Su(0)
52828
48667
38517
33956
29261
26753
19674
10312
10960

SH
0.19998
0.18035
0.14011
0.12145
0.10276
0.09197
0.06859
0.03644
0.04410

S sHy

0.19293
0.17707
0.13447
0.11569
0.09543
0.08539
0.06423
0.03344
0.04076
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SF2 Growth structure with related transition dynamics by country

The capital-output ratio” along with the change in beta (6:0,‘
UK Japan U S: each Y axis

Japan 83-95
w— = S 83-95
= = = UK?8395

The capital-output
o w oS X 8

0.7 0.75 0.8 0.85 0.9 0.95 1
beta*

Japan 1983-95: current beta=0.9359

Y axis

n
— _gy‘

- - -gY’

n, gy* and g¥*

The US 1983-95: current beta=0.9202

- --gY‘

beta*

The UK 1983-95: current beta=0.8522
0.05

0.04
0.03
- 0.02
- 0.01
0.00

and gY*

w—— --gy'

*

- - -gY.

n*

0.7 0.75 0.8 0.85 0.9 0.95 1

beta*

Note: » is a positive function of beta * ,and i4 ‘isa negative function of beta * under CRC.
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ST2 The relatonhsip between beta, Q, n, growth rates under CRC”

Under delta=0 and k(¢ )5=1
Japan 83-95

n a s i iy ig 2(0) beta (5.g) opl beta*
0.00809 0.09483 0.24860 0.20745 0.1740 0.0335 3.8353 0.8387 0.8354

° n gy. gr eta’ 5.0y 4 g
1.8761 -0.02891 0.0688 0.0399 -0.01 0.7719 0.0473 0.0523
2.3628 -0.01582 0.0573 0.0415 -0.005 0.7906 0.0434 0.0480
3.0565 -0.00245 0.0458 0.0434 0 0.8091 0.0396 0.0438
4.1252 0.01121 0.0344 0.0456 0.005 0.8274 0.0358 0.0396
59854 0.02519 0.0229 0.0481 0.01 0.8456 0.0320 0.0354

10.0337  0.03947 0.0115 0.0509 0.015 0.8637 0.0283 0.0312

14,5875  0.04674 0.0057 0.0525 0.02 0.8816 0.0246 0.0271

25.6439  0.05409 0.0000 0.0541 0.025 0.8993 0.0209 0.0231
3.8353 0.00809 0.0370 0.0451{ 0.00809 0.8387 0.0335 0.0370

The US 83-95
n a s i ix’ ig

0.02268  0.09691  0.09931  0.08575 0.0802 0.0055 2.7765' 0.9359 0.9353

n 8y 8y . i4 gy
-0.00668 0.0285 0.0218 .01 . 0.0281 0.0311
-0.00056 0.0237 0.0232 -0.005 0.7138 0.0245 0.0272

0.00561 0.0190 0.0246 0 0.7546 0.0210 0.0233
0.01184 0.0142 0.0261 0.005 0.7951 0.0176 0.0195
0.01813 0.0095 0.0276 0.01 0.8353 0.0141 0.0156
0.02448 0.0047 0.0292 0.015 0.8752 0.0107 0.0119
0.02767 0.0024 0.0300 0.02 0.9148 0.0073 0.0081
0.03088 0.0000 0.0309 0.025 0.9541 0.0039 0.0044
0.02268 0.0061 0.0288 | 0.02268 0.9359 0.0055 0.0061

The UK 83-95
n a s i ix is
0.00668 0.10094 0.10029 0.08754 0.0635 0.0240 1.8924 0.7256 0.7238

ol n g gr is g,
7| 16983 000308 00292  0.0323 20.01| 06056 00345  0.0384
0.75| 21057 001011 00243  0.0344| -0.005| 06419 00313  0.0349
08| 26649 001720 00195  0.0367 ol 06779 00282 00314
0.85| 3.4806 002436 00146  0.0390 0.00s| 07137 00251 00279
09| 47815 003150 00097  0.0413 0.01] 07493 00219  0.0244
095| 7.1838 003889  0.0049  0.0438 0.015| 07846 00189  0.0210
0975| 93526 004256  0.0024  0.0450 0.02| 08196 00158  0.0176
13.1135  0.04626  0.0000  0.0463 0.025| 0.8545 00127  0.0142
18924 0.00668  0.0267  0.0334| 000668 | 07256  0.0240  0.0267

Notes:

1. Equations: Q=(g i(I- a)/(i(l- B)(1+n)+n(i-a)). n=(pB i(l- a)- Qi(l- P/ 2(i(1-b)+(]- a))).
B=(2(n(l-a)+i (1+n))/(i(]l- a)+ Q2 i (]1+n)).

2. The higher the i, the higher £2°, where i differs by 6, as banking cost parameter.

3. The higher the n and £2°, the higher the beta * under CRC.

4. The higher the n, signifcantly lower the g, *, but gradually higher the g » * under CRC.
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SF3 Changes in population growth, the rate of investment, and alpha, to beta”

beta " (delta*=0) along the change in population growth, n

3

*\.I

;: Japan 83-95
S — = US 83-95

3 = = = UKB8395

-0

-0.010 -0.005 0.000 0.005 0.010 0.015 0.020 0.025
Population growth, #

beta ' (delta "=0) along with the change in the rate of invesment, i

5

5 Japan 83-95
3 _—- -

3 US 83-95

* = = = UK 8395
3

3

-

The rate of investment, i

beta” (delta "=0) along with the change in alpha

>

Il

tg Japan 83-95
= —— R

3 US 83-95
*5. = = = UK83-95
V

S

-0.03 0.00 0.03 0.05 0.08 0.10 0.13 0.15
The relative share of profit, alpha

Notes:

1. Based on Eq. 23 nad 24 under the optimum CRCsituation and using delta *=0.

2. With no banking costs, the rate of saving equals the rate of investment: s=i.

3. Population growth and the rate of investment influence beta * and, accordingly, growth rates .
4, The relative share of profit, alpha, does not influence beta * ,in contrastton and i.
5.Each country has its own growth structure, depending on the initial parameters.



Hideyuki Kamiryo

ST3 The changes in alpha and i in growth structure: simulation by country
Japan 83-95

n a s i i ig" 2(0)

0.00809 0.09483  0.24860 0.20745 0.1740 0.0335 3.8353 0.8387 0.8354

E 9’0‘«5:0) is gy‘ gr : beta.(5=0) is" gy‘
-0.025 0.8218 0.0370 0.0361 0.0442 -0.050 0.6926 -0.0154 -0.0170
0 0.8252 0.0363 0.0363 0.0443 -0.025 0.5749 -0.0106 -0.0117
0.025 0.8287 0.0355 0.0364 0.0445 -0.0125 0.3394 -0.0083 -0.0091
0.05 0.8323 0.0348 0.0366 0.0447 0| #DIV/0! #DIV/0!  #DIV/0!
0.075 0.8358 0.0341 0.0368 0.0449 0.0125 1.2812 -0.0035 -0.0039
0.1 0.8394 0.0333 0.0370 0.0451 0.025 1.0457 -0.0011 -0.0013
0.125 0.8431 0.0326 0.0372 0.0453 0.05 0.9280 0.0036 0.0040
0.15 0.8467 0.0318 0.0374 0.0455 0.075 0.8888 0.0083 0.0092
0.09483 0.8387 0.0335 0.0370 0.0451 0.125 0.8574 0.0178 0.0197

The US 83-95
n a s i ix ig £2(0)
0.02268  0.09691 0.09931 0.08575 0.0802 0.0055 2.7765 0.9359 0.9353

* * » * *

. beta.(‘;:o, iq gy gy beta'(‘;,g) iy gy
-0.025 0.9295 0.0060 0.0059 0.0286 -0.050 0.4548  -0.0273 -0.0302
0] 0.9308 0.0059 0.0059 0.0286 -0.025 0.1509 -0.0212  -0.0235

0.025 0.9321 0.0058 0.0060 0.0287 -0.0125f -0.4568 -0.0182  -0.0202

0.05 0.9334 0.0057 0.0060 0.0287 0| #DIV/0! #DIV/0!  #DIV/0!

0.075 0.9347 0.0056 0.0061 0.0287 0.0125 1.9742 -0.0122  -0.0135

0.1 0.9361 0.0055 0.0061 0.0288 0.025 1.3665 -0.0092 -0.0101

0.125 0.9374 0.0054 0.0061 0.0288 0.05 1.0626  -0.0031 -0.0035

0.15 0.9388 0.0052 0.0062 0.0289 0.075 0.9613 0.0029 0.0032

0.09691 0.9359 0.0055 0.0061 0.0288 0.125 0.8803 0.0150 0.0166
The UK 83-95

. *

n a s i ig iy £2(0)
0.00668 0.10094 0.10029 0.08754 0.0635 0.0240 1.8924 0.7256 0.7238
0.0875

* . .

B dbeta’s0) g g gy -bem‘(ko) iq gy
-0.025 0.7007 0.0262 0.0256 0.0322 -0.050 0.5984  -0.0201 -0.0223

0l 0.7054 0.0258 0.0258 0.0325 -0.025| 0.5174  -0.0121  -0.0134
0.025] 0.7103 0.0254 0.0260 0.0327 -0.0125] 0.3554  -0.0081  -0.0090
0.05] 0.7153 0.0249 0.0262 0.0329 0| #DIV/0! #DIV/0! #DIV/0!

0.0751 0.7203 0.0245 0.0265 0.0331 0.0125 1.0034 0.0000 0.0000

0.1 0.7255 0.0240 0.0267 0.0334 0.025] 0.8414 0.0040 0.0044
0.125] 0.7307 0.0236 0.0269 0.0336 0.05] 0.7604 0.0120 0.0133
0.15] 0.7360 0.0231 0.0272 0.0339 0.075] 0.7334 0.0200 0.0222
0.10094 0.7256 0.0240 0.0267 0.0334 0.125 0.7118 0.0360 0.0401




