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ABSTRACT

The cell has a number of defensive systems to promote survival during periods of 

environmental stress. One of the most highly conserved system of cellular protection involves 

the expression of a polypeptide family known as heat shock proteins (HSPs). HSPs ubiquitously 

express in multiple cells and act as molecular chaperones that have cytoprotective functions: 1) 

to help protein folding in various intracellular compartments, 2) to maintain structural proteins, 

3) to translocate proteins across membranes into cellular compartments, 4) to prevent protein 

aggregation, and 5) to degrade unstable proteins. A 72 kDa stress-inducible HSP72 is one of 

the most prominent members of the HSP family, and has widely studied in mammalian skeletal 

muscle. This review focuses mainly on HSP72, which has been well characterized in skeletal 

muscle and which recent evidence suggests functional availability to skeletal muscle.

Expression of HSP72 in Skeletal Muscle

Multiple HSPs are expressed in skeletal muscle. HSPs have normally been classi�ed 

according to molecular mass. The most prominent are small HSP (αA- and αB- crystallin and 

HSP27), HSP40, HSP60, HSP70, HSP90, and HSP110 families. HSPs are expressed either 

constitutively or can be induced by stress stimulation in skeletal muscle (9, 17). Molecular 

chaperones such as HSPs are well known to reduce cellular damage (8, 19). HSPs have multiple 

functions in maintaining intracellular integrity via protection, repair, and even control of signaling 

for cell death (17, 41). HSP72, a molecular weight 72-kDa and stress-inducible isoform, is one 

of the most prominent isoforms belonging to the HSP70 family, and has been well studied in 

mammalian skeletal muscle. Its expression is increased by multiple stressors including thermal 

stress, oxidative stress, and exercise (9, 22, 33). For example, HSP72 expression is upregulated 

immediately after thermal stress in the soleus muscle, and within 24 h in the plantaris muscle 
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(33). Both exhaustive endurance exercise (5) and resistance exercise (43) markedly increase 

HSP72 expression. On the other hand, decreased mechanical loading, such as cast immobilization 

and rat tail suspension, leads to the downregulation of HSP72 with increasing susceptibility to 

damage of skeletal muscle (1, 20, 36). Thus, exercise-related stimulations seem to be necessary 

to increase and/or sustain HSP72 content in skeletal muscle.

Exercise elicits numerous cellular and molecular stressors, such as heat, substrate depletion, 

and oxidative stress, appear to behave as inductive stimuli, in isolation or in combination, for 

increases in HSP72 (34) (6) (15). Although high intensity or endurance exercise could strongly 

induce HSP72 expression in skeletal muscle, recent study indicates that the development of 

fatigue of muscle �ber is not necessary for contraction-induced activation of HSP72 transcription 

in skeletal muscle �ber (42). In addition, the intermittent intracellular Ca2+ transient seems to 

be suf�cient to activate HSP72 transcription in muscle �ber even without force generation. Stary 

and Hogan (2016) observed that both fatigued and nonfatigued muscle with electrical stimulation-

related contraction (0.10 Hz and 0.33 Hz) similarly increased HSP72 mRNA. Muscle single 

�ber treated N-benzyl-p-toluene sulfonamide, which resulted in signi�cant impairment of cross 

bridge cycling and reduction of the development of muscle �ber tension, also showed suf�cient 

HSP72 mRNA induction by electrical stimulation, as same as untreated control muscle 

�ber. Thus, excitation-contraction coupling, force generation, fatigue may be not essential for 

exercise-related HSP72 synthesis in skeletal muscle. The greater expression of HSP72 in slow-

twitch �bers than in fast–twitch �bers may strongly depend on frequencies of mechanical stress 

and intracellular Ca2+ transient.

HSP72 and Muscle Protection and Regeneration

The acquisition of muscle tolerance to stressors inducing muscle damage, such as mechanical 

and oxidative stresses, is related to prevention of cell injury and facilitation of recovery from 

injury. Heat treatment appears to contribute to cellular protection and facilitation of cellular 

remodeling after injury in skeletal muscle (37) (44). Prior heat treatment can depress the 

increments of plasma creatine kinase (CK) and in�ltration of mononuclear in�ammatory cells in 

rat skeletal muscle after eccentric running exercise. In addition, pre-heat treated rats present 

with a greater increase in total protein concentration and neonatal MyHC expression than non-

heated rats during recovery after exercise (44).

Recently, direct evidences that HSP72 contributes signi�cantly to provide muscle protection 
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to exercise stimulation have been reported, supporting the bene�ts of heat preconditioning (2, 13, 

14, 21, 24–26) . First de�nitive evidence was study of HSP72 transgenic (TG) mice by McArdle 

et al. (24). They reported that muscles from HSP72 TG mice had less muscle �ber damage and 

reduced de�cits in muscle-speci�c force compared to wild type (WT) mice following the 

lengthening muscle contractions. Furthermore, HSP72 also seems to contribute facilitating 

regeneration following muscle injury as well as muscle protection. Skeletal muscles from 

HSP72 TG mice were found to reduce the number of necrosed myo�bers by cryolesioning and 

to have enhanced subsequent morphological recovery (26). Pharmacological enhancement of 

HSP72 by BGP-15 treatment promotes the increment of embryonic MyHC, type I MyHC, and 

type II MyHC in regenerating muscles and prevents the reduction in tetanic force and fatigue 

resistance of regenerating soleus muscle after cryolesion-induced muscle damage (30). Moresi 

et al. directly reported role of HSP70 in regenerating process (27). In their study, HSP72 was 

overexpressed by plasmid electroporation into muscle 3 days following cryolesioning-induced 

muscle injury. The cross sectional area of regenerating myo�bers positive HSP72 showed 

signi�cantly larger than control 7 days following muscle injury. Thus, enhancing HSP72 

expression post-injury can facilitate the muscle regenerative process, suggesting availability as 

therapeutic target.

Inversely, lack of HSP70 in skeletal muscle leads impairments of in�ammatory response and 

regeneration after injury. Senf et al. (2013) conducted experiment using WT and HSP70 -/-, 

Hspa1a and Hspa1b knockout, mice which were injured muscles by injection of cardiotoxin, and 

observed regenerative process at various time points. They observed that the expression of pro-

in�ammatory cytokines and immune cell in�ltration were drastically reduced in injured muscle 

from HSP70 -/- mice compared with WT mice at early time point (40). This disturbed early 

in�ammatory response in HSP70 -/- mice was associated with impairments in subsequent muscle 

recovery which were sustained in�ammation and smaller �ber size than WT mice at later time 

points. Because HSP70 could bind and activate macrophages (16) and neurophils (35) which 

in�ltrated damaged muscle and regulate regeneration process, level of HSP70 in skeletal muscle 

has a signi�cant impact on successful regeneration via in�ammatory process after muscle injury.

Collectively, HSP72 has functions to protect skeletal muscle from exercise stimulation and to 

facilitate recovery from injury. Prolonged exercise training notably induces HSP72 in skeletal 

muscle, and the expression level is maintained for a long term compared with a single bout of acute 

exercise (32). Therefore, long-term enhancement of HSP72 by repeated-exercise stimulations may 

be one of the muscle adaptation for prevention of muscle damage and facilitation of recovery.
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HSPs and Sarcopenia

Aging causes a progressive loss of muscle mass and strength, called sarcopenia, independent 

of any disease process. Aging is associated with an increased susceptibility to contraction-

induced muscle damage and disrupted �bers are observed more commonly in older muscle, 

suggesting less protection from damage than in younger muscle (31). The ability of the cell to 

induce HSPs following stress stimulation decreases with aging. Aged skeletal muscle in rats 

fails to increase HSP72 following muscle contractile activity, although increases do occur in 

younger adult (45–47). The lack of stress response in muscles of older rodents has been 

proposed as a major factor in the development of age-related functional de�cits. The constitutive 

overexpression of HSP72 improves even normal age-related muscle dysfunction. Lifelong 

HSP72 overexpression in TG old mice can depress age-related increases in lipid peroxidation, 

catalase activity, and protein carbonyls (2). In addition, pharmacological enhancement of HSP72 

induced by 17-(allylamino)-17-demethoxygeldanamycin treatment facilitates successful recovery 

of maximum tetanic force generation in aged-skeletal muscle at 28 days following lengthening 

muscle contraction (13).

HSP10, localize in mitochondria, also appear to contribute preventing sarcopenia 

progression. Lifelong overexpression of HSP10 in TG mice clearly can prevent age-related 

decreases in maximum force generation and �ber cross sectional area in muscle of old wild-type 

mice (14). In addition, levels of carbonylated mitochondrial proteins in HSP10 TG mice were 

lower than in wild-type mice. It is well known that mitochondrial dysfunction is associated with 

progression of the aging process (11) and that oxidative damage to mitochondrial DNA and 

proteins accumulates over time due to ROS produced by the electron transport chain. Segmental 

mitochondrial abnormalities containing mitochondrial DNA deletion mutations have been 

observed in aged skeletal muscle (48). Muscle �bers harboring mitochondrial mutations often 

display sectional atrophy, splitting, and increased steady-state levels of oxidative nucleic damage 

(3, 48). Relationship between HSP72 and mitochondria abnormality has been unknown. Because 

enhancement of HSP72 increases mitochondria number and oxidative capacity in skeletal muscle 

(12), further investigations are needed to clarify role of HSPs on age-related muscle weakness 

with mitochondria abnormality.
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HSP72 and Disuse atrophy

Mechanical unloading induces skeletal muscle atrophy with reduction of HSP72 expression, 

but pre-heat treatment can mitigate subsequent unloading-induced muscle atrophy (28). This 

�rst evidence has led to investigate relationship between HSP72 and maintenance of muscle 

mass. HSP72 expression is downregulated in atrophying muscle during hindlimb immobilization 

in mice (29). On the other hand, HSP72 overexpression restrains progression of disuse-related 

muscle �ber atrophy (23, 38, 39). Senf et al. (2008) demonstrated that HSP72 overexpression 

by injection of an HSP72 expression plasmid abolished any increase of total ubiquitinated proteins 

in muscle after seven days of immobilization (39). In addition, they reported that FOXO3a 

transcriptional activity was increased by 7-fold following seven days of hindlimb immobilization, 

but was completely abolished in muscle injected with HSP72. This interaction between HSP72 

and FOXO3a is also demonstrated by the inhibition of FOXO3a-dependent transcription of 

MAFbx by HSP72 (38, 39). Similar to FOXO3a, enhancement of NF-κB transcriptional activity 

during muscle disuse is completely abolished by HSP72 overexpression (39). Because FOXO 

signaling is able to account for ~40% of disuse muscle �ber atrophy (38), regulation of ubiquitin 

proteasome pathway via interaction between HSP72 and FOXO3a may be a main scenario in 

amelioration of unloading-induced muscle atrophy by pre-heat conditioning.

HSP72 and Regulation of Metabolism

Evidences show that heat treatment blocks the development of insulin resistance in response 

to a high-fat diet (7, 10). Gupte et al. (2009) showed that high-fat fed rats treated weekly with 

heat had lower serum insulin and effective glucose clearance after glucose injection compared 

with non-heat treated high-fat fed rats (10). They observed that heat treatment results in 

decreased activation of JNK and IKK-β, which are implicated in insulin resistance, and 

upregulation of HSP72 and HSP25.

In a human study, HSP72 mRNA in muscle is signi�cantly lower in type 2 diabetic patients 

than in healthy subjects, and HSP72 mRNA content in muscle inversely correlates with the rate 

of glucose uptake and insulin-stimulated carbohydrate and lipid metabolism (18). Furthermore, 

obese insulin-resistant humans have lower HSP72 protein levels compared with healthy people 

(4). Although heat treatment upregulates HSP72, the increase is attenuated by a high-fat diet 

(4).
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The bene�t of thermal treatment to insulin resistance have been con�rmed by studies of 

genetic overexpression model of HSP72 (4). TG mice with muscle-speci�c overexpression of 

HSP72 have lower levels of fasting glucose and insulin than wild-type mice after high-fat diet. In 

addition, mice with HSP72 overexpression display notably improved glucose and insulin tolerance 

compared with wild-type mice when placed on a high-fat diet (4). Upregulation of HSP72 by 

BGP-15 treatment also shows the same effects as the transgenic model on insulin resistance 

(4). It has been indicated these effects of HSP72 increment were involved with minimizing 

in�ammation (10) (4) and enhancing metabolic oxidation via mitochondria (12) in skeletal 

muscle. HSP72 TG mice has a large number of mitochondria and exhibits superior running 

capacity and increased fatty acid oxidation compared with WT mice (12). Therefore, HSP72 

has potentially availability for ameliorations of metabolic condition and enhancement of endurance 

capacity.
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