Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects: 58 Countries and Three Areas by Sector, 1990-2007

Hideyuki Kamiryo
(Received on September 14, 2009)

This paper, using the endogenous-data of KEWT 3.09 by country, focuses on how the endogenous wage rate, $w=W / L$, changes with the rate of return by year (or, how the marginal rate of substitution, $M R S=\frac{\Delta(r / w)}{r / w}$, changes), against the change in the capital-labor ratio, i.e., how the elasticity of substitution sigma, $\sigma=\frac{\Delta k / k}{\Delta(r / w) / \Delta(r / w)}$, changes. Without the change in sigma, the author's 'endogenous' does not exist. In the endogenous-equilibrium, price level is shown by the 'relative' price $=1.0$ by year, but independently between two years. The price-equilibrium in the literature holds with actual prices P by year, but it is difficult to measure P. In both equilibriums, therefore, the differences of prices between two years must be commonly estimated by using external consumers' price index, $C P I$, or the similar.

The conventional Cobb-Douglas production function is based on the priceequilibrium and holds by year. However, it is unable to measure the elasticity of substitution consistently over years. The endogenous Cobb-Douglas production function, on the other hand, is based on the endogenous-equilibrium, where the endogenous-data are consistent over years so that the elasticity of substitution is measured consistently over years. In short, the elasticity of substitution changes by year in accordance with the endogenous-equilibrium. Assume that the price-equilibrium equals the endogenous-equilibrium in the long run. Even in this case, price changes between two years must depend on
external indicators such as CPI.
The endogenous-data also shows the transitional path at one fiscal year by using endogenous recursive programming. In this recursive programming, the relative price is also 1.0 , where $P \cdot Y=r \cdot K+w \cdot L$ and $p=1.0=P \cdot Y / Y$. Then, the elasticity of substitution remains 1.0 , continuously by time/year (for the proof, see Figure 21 at the end of this paper): the rate of change in the capital-labor ratio $k=K / L$ is negatively equal to the rate of change in the MRS.

The author's endogenous model is based on the (conventional) Cobb-Douglas production function under constant returns to scale. This Cobb-Douglas production function, however, has hidden parameters such as beta, delta, and lambda. ' 1 - beta', determines a base for the rate of technological progress, as the ratio of qualitative investment to total investment: $g_{A}^{*}=i_{A}^{*}=i\left(1-\beta^{*}\right)$. The coefficient of diminishing returns, delta, is measured using the capital-output ratio $\Omega^{*}=K / Y$ and $B=\left(1-\beta^{*}\right) / \beta^{*}: \delta_{0}=1-\frac{L N\left(1 / \Omega^{*}\right)}{L N\left(B^{*}\right)}$. The endogenous speed of convergence, $1 / \lambda^{*}$, is: $\frac{1}{\lambda^{*}}=\frac{1}{(1-\alpha) n+\left(1-\delta_{0}\right) g_{A}^{*}}$ while externally, $(1-\alpha)\left(n+g_{A(E X T E R N A)}\right)$ was earlier formulated for the denominator (see, e.g., Barro and Sala-i-Martin, 1989). Using these endogenous parameters, data and model are consistent with each other by year and over years.

This paper, before showing sigma and MRS, illustrates six most influential aspects of the endogenous-data. These aspects are: endogenous taxes and given deficit related to equilibrium (S1 in Figures S1 to S12, below), government deflation rate related to huge deficit (S2), the difference between the growth rate of the current technology level and the endogenous rate of technological progress (S3), alpha hyperbolic curve convex to downwards, which is the product of the capital-output ratio and the rate of return at convergence (S4), the government sector's alpha, similarly to S 4 , but rigorously reflecting huge deficit (S5), and the private sector's national taste as the ratio of the discount rate of

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects consumption goods to that of saving/capital goods (S6).

The above six aspects overwhelmingly imply that budget surplus/deficit determines the economic power by country and under different national taste (see S6). And, a country maintains sustainability with environmental 'technology and investment', which strengthen the endogenous-data most consistently. Improvement in 'eco and green' is not costs but the everlasting promoter to maintaining better endogenous equilibrium. Typically, if the capitaloutput ratio goes up due to government deficit and its investment as in Japan (see S5), it damages the base for economic growth miserably. One more, throughout countries, the relationship between growth and inequality becomes robust by appropriate policies taken by country, as strongly suggested by S6 (Figure S11 and 12). The shift from capital investment to human investment in education and welfare helps an economy to stop inequality as a whole.
$M R S=\frac{\Delta(r / w)}{r / w}$ and $\sigma=\frac{\Delta k / k}{\Delta(r / w) / \Delta(r / w)}$ integrate the above six aspects although each aspect is interrelated to each other. The endogenous model is never 'partial' and as a result, guarantees full employment with a low inflation rate. Endogenous equilibrium is a base for full employment. This implies that deficit is a vital clue to determine the future of an economy. Figures in this paper remind past policies in 1990/1995 to 2007 by country. Each country has taken different policies and the results differ surprisingly. Nevertheless, numerical system/mechanism is common to each country. National taste still holds by country: National taste of the total economy uses a common taste function to its propensity to consume. Government neutral taste uses the same taste function to its propensity to consume. As a result, private taste function to its propensity to consume differs surprisingly. National taste coexists with culture and system.

Results reflect philosophy, culture, and will of policy-makers. When the lines and curves of the above seven aspects (including sigma and MRS) are simple,

Papers of the Research Society of Commerce and Economics, Vol. L No. 2 smooth, and robust, these imply that endogenous equilibrium holds without extra manipulation. When these lines and curves are rather complicated and irregular, endogenous equilibrium holds but with changing policies in the short run and/or instability of political situations. In other words, if economic, fiscal, and financial policies are consistent with each other in the long run, sustainability of an economy is strengthened, regardless of whether government is apparently democratic or not. The target of sustainability is the welfare of people including next generations. Even in a democratic society, if its level is selfish, group-oriented, and short-sighted, the level of democracy is inferior to an economy whose philosophical target is steady and robust. Figures of seven aspects give readers a real image of democratic level by country.

Finally, the author stresses, it is required for policy-makers to publish rough results obtained from such as the above seven aspects with clear-cut explanations by year: First endogenous results, second, disclosures and explanations, and third understanding of people's will in accordance with each own culture. Global cooperation will be strengthened towards sustainable economy by country.

Questions and aspects	From usual C-D produ	To 'endogenous' C-D production fucntion
In an open economy		
1. Common base:	Constant returns to scale. National accounts in 'continuous.'	Constant returns to scale. National accounts in 'discrete' and no differntial.
$\begin{aligned} & Y=A K^{\alpha} L^{1-\alpha} \quad y=A K^{\alpha} \\ & A=k^{1-\alpha} / \Omega \text { (2003, Note 11). } \end{aligned}$	Price-equilibrium by year, with P. (Between two years, there is no measure of price differences).	Endogenous-equilibirum by year, with $P=1.0$. (Between two years, there is no measure of price differences).
	There is no excessive profit	There is no excessive profit
	Relative share of capital α is used.	Relative share of capital α is explicitly used.
2. Essential difference: Partial versus general. Short versus long over years.	Capital $K \&$ the rate of return r is independent, using statistics-data. $(Y=C+S=W+\Pi \text { is not strict })$ No implicit parameters are used. Rate of tech.progress is given. In the long run, full-employment under the growth rate of population. The speed of convergence is used, externally under constant returns to capital. Capital K \& the rate of return are consistent in a whole mumerical system, endogenous-data. ($Y=C+S=W+\Pi$ is an essential prerequisite). Three basic endogenous parameters are used*. Rate of tech.progress is endogenously measured. The level of under-, full-, and over-employment is enodgenously measured by compaing the actual growth rate of population with endogenous. The endogenous speed of convergence is used, under diminishing returns to capital, delta $>\alpha$, and under increasing returns to capital, delta $<\alpha$.	

[^0]Figure S1 Endogenous taxes, deficit, and the propensity to save: the US, Canada, the UK, Germany, Norway, and Sweden

Figure S2 Endogenous taxes, deficit, and the propensity to save: Japan, China, India, Brazil, Russia, and Singapore
Figure S3 Government rate of inflation and the ratio of debt to output: the US, Canada, the UK, Germany, Norway, and Sweden

Figure S4 Government rate of inflation and the ratio of debt to output: Japan, China, India, Brazil, Russia, and Singapore
Figure S5 Growth rates of the current level of technology and the rate of tech. progress at convergence: the US, Canada, the UK, Germany, Norway, and Sweden
Figure S6 Growth rates of the current level of technology and the rate of tech. progress at convergence: Japan, China, India, Brazil, Russia, and Singapore

Figure S7 Alpha's curve as the product of the rate of return and the capital-output ratio: the US, Canada, the UK, Germany, Norway, and Sweden
Figure S8 Alpha's curve as the product of the rate of return and the capital-output ratio: Japan, China, India, Brazil, Russia, and Singapore

Figure S9 Government alpha's curve as its product of the rate of return and the capitaloutput ratio: the US, Canada, the UK, Germany, Norway, and Sweden
Figure S10 Government alpha's curve as its product of the rate of return and the capitaloutput ratio: Japan, China, India, Brazil, Russia, and Singapore

Figure S11 Private sector's national taste with its propensity to consume: the US, Canada, the UK, Germany, Norway, and Sweden

Figure S12 Private sector's national taste with its propensity to consume: Japan, China, India, Brazil, Russia, and Singapore
Figure 1 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Non-EU 30 countries on average, the US, and Canada

Figures 2 to 10: F2, Australia, New Zealand, and Mexico; F3, China, India, and Indonesia; F4, Japan, Korea, and Malaysia; F5, Philippines, Singapore, and Thailand; F6, Vietnam, Argentina, and Brazil, F7, Chile, Colombia, and Peru; F8, Iran, Kazakhstan, and Kuwait; F9, Pakistan, Saudi Arabia, and Egypt; F10, Kenya, Nigeria, and Tanzania;

Figures 11 to 20: F11, Euro currency countries, Austria, and Belgium; F12, Finland, France, and Germany; F13, Greece, Ireland, and Italy; F14, Luxemburg, Netherlands, and Portugal; F15, Slovenia, Spain, and 15 Non-Euro countries on average; F16, Bulgaria, Czech Republic and Denmark; F17, Hungary, Ireland, and Latvia; F18, Norway, Poland, and Romania; F19, Russia, Slovak, and Sweden; F 20, Switzerland, Turkey, and the UK Figure 21 Proof of elasticity of substitution, sigma $=1.0$, in recursive programming

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects
Endogenous taxes (1)

Data source: KEWT 3.09 of fifty-eight countries and three areas on average by sector, 1990-2007, whose ten original data come from International Financial Statistics Yearbook, IMF. (hereafter, abbreviated)
Figure S1 Endogenous taxes, deficit, and the propensity to save: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
Endogenous taxes (2)

Figure S2 Endogenous taxes, deficit, and the propensity to save: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects Government rate of inflation (1)

Figure S3 Government rate of inflation and the ratio of debt to output: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
Government rate of inflation (2)

Figure S4 Government rate of inflation and the ratio of debt to output: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects
Technological progress: stock and flow (1)

Figure S5 Growth rates of the current level of technology and the rate of tech. progress at convergence: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
Technological progress: stock and flow (2)

Figure S6 Growth rates of the current level of technology and the rate of tech. progress at convergence: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects Growth and inequality: for the stable curve of alpha (1)

Figure S7 Alpha's curve as the product of the rate of return and the capital-output ratio: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
Growth and inequality: for the stable curve of alpha (2)

Figure S8 Alpha's curve as the product of the rate of return and the capital-output ratio: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects Government alpha through government deficit (1)

Figure S9 Government alpha's curve as its product of the rate of return and the capital-output ratio: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
Government alpha through government deficit (2)

Figure S10 Government alpha's curve as its product of the rate of return and the capital-output ratio: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects
National taste differs by country in equilibrium (1)

Figure S11 Private sector's national taste with its propensity to consume: the US, Canada, the UK, Germany, Norway, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
National taste differs by country in equilibrium (2)

Figure S12 Private sector's national taste with its propensity to consume: Japan, China, India, Brazil, Russia, and Singapore

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects
Hereafter, for sigma in KEWT3.09, 58 countries and 3 areas

Data source: KEWT 3.09 of fifty-eight countries and three areas on average by sector, 1990-2007, whose ten original data come from International Financial Statistics Yearbook, IMF. (hereafter, abbreviated)
Figure 1 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Non-EU 30 countries on average, the US, and Canada

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 2 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Australia, New Zealand, and Mexico

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 3 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: China, India, and Indonesia

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

sigma=-(dk/k)/(d/MRS)/MRS): Japan	slope $=k /(\alpha /(1-\alpha))$ in the linear $w(r):$ Japan
sigma=-(dk/k)/(d(MRS)/MRS): Korea	slope $=k /(\alpha /(1-\alpha))$ in the linear $w(r)$: Korea
sigma $=-(\mathrm{dk} / \mathrm{k}) /(\mathrm{d}(\mathrm{MRS}) / \mathrm{MRS})$: Malaysia	slope $=k /(\alpha /(1-\alpha))$ in the linear $w(r)$: Malaysia

Figure 4 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Japan, Korea, and Malaysia

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 5 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Philippines, Singapore, and Thailand

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 6 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Vietnam, Argentina, and Brazil

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 7 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Chile, Colombia, and Peru

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 8 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Iran, Kazakhstan, and Kuwait

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 9 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Pakistan, Saudi Arabia, and Egypt

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 10 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Kenya, Nigeria, and Tanzania

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 11 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: 13 Euro currency countries, Austria, and Belgium

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 12 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Finland, France, and Germany

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 13 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Greece, Ireland, and Italy

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 14 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Luxemburg, Netherlands, and Portugal

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 15 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Slovenia, Spain, and 15 Non-Euro countries on average

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 16 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Bulgaria, Czech Republic and Denmark

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 17 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Hungary, Ireland, and Latvia

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 18 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Norway, Poland, and Romania

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects

Figure 19 Elasticity of substitution, sigma, and marginal rate of substitution, MRS:
Russia, Slovak, and Sweden

Papers of the Research Society of Commerce and Economics, Vol. L No. 2

Figure 20 Elasticity of substitution, sigma, and marginal rate of substitution, MRS: Switzerland, Turkey, and the UK

Hideyuki Kamiryo: Changes in Elasticity of Substitution sigma in KEWT 3.09, with Seven Vital Aspects
Figure 21 Proof of elasticity of subs

A recursive programming using the US, 2005, below								
	ES	ET					EY	EZ
	For elasticity, each denominator must be 'average of $\mathrm{t} \& \mathrm{t}-1$.						The marginal rate of	
	N	AK	AN	AM	AI	AJ	The elas	ity of subst
time, t	k	r/w	K	L	r	w	$\Delta \mathrm{k} / \mathrm{k}$	$\Delta(\mathrm{r} / \mathrm{w})$
0	75.33	0.00286	22464	298	0.0860	30.06		
1	77.20	0.00279	23273	301	0.0845	30.27	0.02485	(0.0243)
2	79.07	0.00273	24095	305	0.0831	30.49	0.02417	(0.0236)
3	80.93	0.00266	24930	308	0.0818	30.71	0.02352	(0.0230)
4	82.78	0.00260	25778	311	0.0805	30.93	0.0229	(0.0224)
5	84.63	0.00255	26640	315	0.0793	31.15	0.02232	(0.0218)
6	86.47	0.00249	27516	318	0.0782	31.38	0.02176	(0.0213)
7	88.31	0.00244	28406	322	0.0771	31.61	0.02124	(0.0208)
8	90.14	0.00239	29311	325	0.0761	31.85	0.02074	(0.0203)
9	91.96	0.00234	30230	329	0.0752	32.09	0.02026	(0.0199)
10	93.79	0.00230	31165	332	0.0743	32.33	0.01981	(0.0194)
11	95.60	0.00225	32115	336	0.0734	32.58	0.01939	(0.0190)
12	97.42	0.00221	33080	340	0.0726	32.83	0.01898	(0.0186)
13	99.23	0.00217	34062	343	0.0719	33.09	0.01859	(0.0183)
14	101.04	0.00213	35060	347	0.0711	33.36	0.01822	(0.0179)
15	102.84	0.00210	36075	351	0.0705	33.63	0.01788	(0.0176)
16	104.65	0.00206	37107	355	0.0698	33.91	0.01754	(0.0172)
17	106.45	0.00202	38157	358	0.0692	34.19	0.01723	(0.0169)
18	108.25	0.00199	39226	362	0.0686	34.49	0.01693	(0.0166)
19	110.06	0.00196	40312	366	0.0681	34.79	0.01665	(0.0164)
20	111.86	0.00193	41419	370	0.0676	35.10	0.01638	(0.0161)
21	113.66	0.00190	42544	374	0.0671	35.42	0.01613	(0.0159)
22	115.47	0.00187	43691	378	0.0667	35.75	0.01588	(0.0156)
23	117.28	0.00184	44858	382	0.0663	36.09	0.01566	(0.0154)
24	119.09	0.00181	46046	387	0.0659	36.44	0.01544	(0.0152)
25	120.90	0.00178	47257	391	0.0656	36.80	0.01524	(0.0150)
26	122.72	0.00176	48490	395	0.0653	37.17	0.01505	(0.0148)
27	124.55	0.00173	49747	399	0.0650	37.56	0.01488	(0.0147)
28	126.38	0.00170	51028	404	0.0647	37.96	0.01471	(0.0145)
29	128.22	0.00168	52334	408	0.0645	38.37	0.01455	(0.0143)
30	130.07	0.00166	53665	413	0.0643	38.79	0.01441	(0.0142)
31	131.92	0.00163	55024	417	0.0641	39.23	0.01428	(0.0141)
32	133.79	0.00161	56410	422	0.0639	39.69	0.01415	(0.0140)

Papers of the Research Society of Commerce and Economics, Vol. L No. 2
titution, sigma $=1.0$, in recursive programming

	$\mathbf{F F}=(\mathrm{ES} 12-\mathrm{ES} 11) /((\mathrm{ES} 11+\mathrm{ES} 12) / 2)$				$\mathbf{F G}=(\mathrm{ET} 12-\mathrm{ET} 11) /((\mathrm{ET} 11+\mathrm{ET} 12) / 2)$			
FA	FB	FC	FD	FE	FF	FG	FH	
substitution, $M R S=\Delta(r / w) /(r / w)$					Speed of convergence is 55 times/years.			
itution, $\sigma=-(\Delta \mathrm{k} / \mathrm{k}) /(\Delta(\mathrm{r} / \mathrm{w}) /(\mathrm{r} / \mathrm{w})$					beta*	0.79281	delta	0.46075
$\sigma 1$	$\Delta \mathrm{k} / \mathrm{k}$	$\Delta(\mathrm{r} / \mathrm{w})$	$\sigma 2$	$\sigma 1+2$	$\Delta \mathrm{k} / \mathrm{k}$	$\Delta(\mathrm{r} / \mathrm{w})$	$\sigma 3$	time, t
$\sigma 1=-\mathrm{EY} 12 / \mathrm{EZ} 12$			$\sigma 2=-\mathrm{FB} 12 / \mathrm{FC} 12$		$\sigma 3=-\mathrm{FF} 12 / \mathrm{FG} 12$			
1.02485	0.02425	(0.0249)	0.9757	2.0006	0.0245	(0.0245)	1.0000	1
1.02417	0.02360	(0.0242)	0.9764	2.0006	0.0239	(0.0239)	1.0000	2
1.02352	0.02298	(0.0235)	0.9770	2.0005	0.0232	(0.0232)	1.0000	3
1.0229	0.02239	(0.0229)	0.9776	2.0005	0.0226	(0.0226)	1.0000	4
1.02232	0.02183	(0.0223)	0.9782	2.0005	0.0221	(0.0221)	1.0000	5
1.02176	0.02130	(0.0218)	0.9787	2.0005	0.0215	(0.0215)	1.0000	6
1.02124	0.02080	(0.0212)	0.9792	2.0004	0.0210	(0.0210)	1.0000	7
1.02074	0.02032	(0.0207)	0.9797	2.0004	0.0205	(0.0205)	1.0000	8
1.02026	0.01986	(0.0203)	0.9801	2.0004	0.0201	(0.0201)	1.0000	9
1.01981	0.01943	(0.0198)	0.9806	2.0004	0.0196	(0.0196)	1.0000	10
1.01939	0.01902	(0.0194)	0.9810	2.0004	0.0192	(0.0192)	1.0000	11
1.01898	0.01863	(0.0190)	0.9814	2.0004	0.0188	(0.0188)	1.0000	12
1.01859	0.01825	(0.0186)	0.9817	2.0003	0.0184	(0.0184)	1.0000	13
1.01822	0.01790	(0.0182)	0.9821	2.0003	0.0181	(0.0181)	1.0000	14
1.01788	0.01756	(0.0179)	0.9824	2.0003	0.0177	(0.0177)	1.0000	15
1.01754	0.01724	(0.0175)	0.9828	2.0003	0.0174	(0.0174)	1.0000	16
1.01723	0.01694	(0.0172)	0.9831	2.0003	0.0171	(0.0171)	1.0000	17
1.01693	0.01665	(0.0169)	0.9834	2.0003	0.0168	(0.0168)	1.0000	18
1.01665	0.01637	(0.0166)	0.9836	2.0003	0.0165	(0.0165)	1.0000	19
1.01638	0.01612	(0.0164)	0.9839	2.0003	0.0162	(0.0162)	1.0000	20
1.01613	0.01587	(0.0161)	0.9841	2.0003	0.0160	(0.0160)	1.0000	21
1.01588	0.01564	(0.0159)	0.9844	2.0002	0.0158	(0.0158)	1.0000	22
1.01566	0.01542	(0.0157)	0.9846	2.0002	0.0155	(0.0155)	1.0000	23
1.01544	0.01521	(0.0154)	0.9848	2.0002	0.0153	(0.0153)	1.0000	24
1.01524	0.01501	(0.0152)	0.9850	2.0002	0.0151	(0.0151)	1.0000	25
1.01505	0.01483	(0.0151)	0.9852	2.0002	0.0149	(0.0149)	1.0000	26
1.01488	0.01466	(0.0149)	0.9853	2.0002	0.0148	(0.0148)	1.0000	27
1.01471	0.01450	(0.0147)	0.9855	2.0002	0.0146	(0.0146)	1.0000	28
1.01455	0.01435	(0.0146)	0.9857	2.0002	0.0144	(0.0144)	1.0000	29
1.01441	0.01420	(0.0144)	0.9858	2.0002	0.0143	(0.0143)	1.0000	30
1.01428	0.01407	(0.0143)	0.9859	2.0002	0.0142	(0.0142)	1.0000	31
1.01415	0.01396	(0.0142)	0.9860	2.0002	0.0141	(0.0141)	1.0000	32

[^0]: *: endogenous parameters: $\beta^{*}=\frac{\Omega^{*}\{n(1-\alpha)+i(1+n)\}}{i(1)} \quad \delta_{0}=1-\frac{L N\left(1 / \Omega^{*}\right)}{L N\left(B^{*}\right)} \quad \lambda^{*}=(1-\alpha) n+\left(1+\delta_{0}\right) g_{A}^{*}$
 Note: At the C-D production function, capital K and labor L are stocks, where each stock and flow are consistent.In the discrete case, the endogenous rate of tech. progress, $\mathrm{g}_{A(f l o w)}$, is independent of the current technology, $g_{A(S T O C K)}$; since the relative price level p is 1.0 by fiscal year, but the diference of price level P between two years is unknown.

